Role of human plasma metabolites in prediabetes and type 2 diabetes from the IMI-DIRECT study

糖尿病前期 人体生理学 2型糖尿病 糖尿病 医学 内科学 人血浆 内分泌学 化学 色谱法
作者
Sapna Sharma,Qiuling Dong,Mark Haid,Jonathan Adam,Roberto Bizzotto,Juan Fernández‐Tajes,Angus G. Jones,Andrea Tura,Anna Artati,Cornelia Prehn,Gabi Kastenmüller,Robert W. Koivula,Paul W. Franks,Mark Walker,Ian M. Forgie,Giuseppe N. Giordano,Imre Pávó,Hartmut Ruetten,Manolis Dermitzakis,Mark I. McCarthy
出处
期刊:Diabetologia [Springer Science+Business Media]
卷期号:67 (12): 2804-2818 被引量:8
标识
DOI:10.1007/s00125-024-06282-6
摘要

Abstract Aims/hypothesis Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and type 2 diabetes. Methods As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consortium, 3000 plasma samples were measured with the Biocrates Absolute IDQ p150 Kit and Metabolon analytics. A total of 911 metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statistical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively. Results In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N- lactoylvaline, N -lactoylleucine and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA 1c progression rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate [fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae C36:3 and PC ae C34:3) as well as the two n -3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially had a causal role in the development of type 2 diabetes. Conclusions/interpretation Our findings identify known BCAAs and lipids, along with novel N -lactoyl-amino acid metabolites, significantly associated with prediabetes and diabetes, that mediate the effect of diabetes from baseline to follow-up (18 and 48 months). Causal inference using genetic variants shows the role of lipid metabolism and n -3 fatty acids as being causal for metabolite-to-type 2 diabetes whereas the sum of hexoses is causal for type 2 diabetes-to-metabolite. Identified metabolite markers are useful for stratifying individuals based on their risk progression and should enable targeted interventions. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LAIJINSHENG完成签到 ,获得积分10
2秒前
kimaro完成签到,获得积分10
2秒前
科研通AI5应助Allen采纳,获得10
3秒前
汉堡包应助yuuu采纳,获得10
4秒前
传奇3应助springlover采纳,获得10
4秒前
自然的衫完成签到 ,获得积分10
5秒前
lz发布了新的文献求助10
5秒前
5秒前
神勇秋白发布了新的文献求助10
7秒前
zy发布了新的文献求助10
9秒前
10秒前
源源发布了新的文献求助10
11秒前
忙就去忙咯完成签到,获得积分10
12秒前
13秒前
mariawang发布了新的文献求助10
14秒前
小王发布了新的文献求助10
15秒前
15秒前
义气凡霜完成签到,获得积分10
17秒前
17秒前
17秒前
无奈晓瑶发布了新的文献求助10
18秒前
瓦力完成签到 ,获得积分10
19秒前
20秒前
yuuu发布了新的文献求助10
20秒前
20秒前
可爱的函函应助nansang采纳,获得10
20秒前
呼噜噜ya完成签到 ,获得积分10
21秒前
OSASACB完成签到 ,获得积分10
21秒前
Ronnie完成签到 ,获得积分10
23秒前
美好的冰蓝完成签到 ,获得积分10
23秒前
迟迟完成签到,获得积分10
23秒前
24秒前
秀丽手机发布了新的文献求助30
24秒前
逸鑫林完成签到,获得积分10
24秒前
莹莹完成签到,获得积分20
26秒前
笑点低的紫完成签到,获得积分10
26秒前
虚幻念寒发布了新的文献求助30
27秒前
28秒前
小达人完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194483
求助须知:如何正确求助?哪些是违规求助? 4376780
关于积分的说明 13630148
捐赠科研通 4231820
什么是DOI,文献DOI怎么找? 2321248
邀请新用户注册赠送积分活动 1319410
关于科研通互助平台的介绍 1269763