Bayesian statistics for clinical research

贝叶斯概率 贝叶斯统计 统计 计量经济学 计算机科学 贝叶斯推理 数学
作者
Ewan C. Goligher,Anna Heath,Michael O. Harhay
出处
期刊:The Lancet [Elsevier BV]
卷期号:404 (10457): 1067-1076 被引量:15
标识
DOI:10.1016/s0140-6736(24)01295-9
摘要

Frequentist and Bayesian statistics represent two differing paradigms for the analysis of data. Frequentism became the dominant mode of statistical thinking in medical practice during the 20th century. The advent of modern computing has made Bayesian analysis increasingly accessible, enabling growing use of Bayesian methods in a range of disciplines, including medical research. Rather than conceiving of probability as the expected frequency of an event (purported to be measurable and objective), Bayesian thinking conceives of probability as a measure of strength of belief (an explicitly subjective concept). Bayesian analysis combines previous information (represented by a mathematical probability distribution, the prior) with information from the study (the likelihood function) to generate an updated probability distribution (the posterior) representing the information available for clinical decision making. Owing to its fundamentally different conception of probability, Bayesian statistics offers an intuitive, flexible, and informative approach that facilitates the design, analysis, and interpretation of clinical trials. In this Review, we provide a brief account of the philosophical and methodological differences between Bayesian and frequentist approaches and survey the use of Bayesian methods for the design and analysis of clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Star101HP发布了新的文献求助50
1秒前
zeroayanami0完成签到,获得积分10
1秒前
qiao发布了新的文献求助10
2秒前
姜至完成签到,获得积分10
2秒前
whiter完成签到,获得积分10
2秒前
3秒前
3秒前
Akim应助香山叶正红采纳,获得10
4秒前
222222发布了新的文献求助10
4秒前
4秒前
5秒前
Hina完成签到,获得积分10
5秒前
dudu发布了新的文献求助10
7秒前
半夏发布了新的文献求助10
7秒前
8秒前
悠然发布了新的文献求助10
9秒前
顾己发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
小米粥完成签到,获得积分10
11秒前
11秒前
11秒前
Tao完成签到,获得积分10
12秒前
无奈的灵松完成签到 ,获得积分10
12秒前
左一完成签到,获得积分10
13秒前
13秒前
13秒前
狂野世立发布了新的文献求助10
13秒前
嘻嘻哈哈完成签到 ,获得积分10
13秒前
13秒前
科研小哥发布了新的文献求助10
13秒前
酷波er应助Amanda采纳,获得10
13秒前
斯文败类应助cheeen54采纳,获得10
14秒前
小杰完成签到 ,获得积分10
14秒前
14秒前
xiaowang完成签到,获得积分10
14秒前
斯文败类应助谦让碧菡采纳,获得10
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Topophrenia: Place, Narrative, and the Spatial Imagination 200
Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031