On the Value of Risk-Averse Multistage Stochastic Programming in Capacity Planning

随机规划 数学优化 价值(数学) 产能规划 动态规划 计算机科学 数学 运筹学 运营管理 经济 统计
作者
Xian Yu,Siqian Shen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0396
摘要

We consider a risk-averse stochastic capacity planning problem under uncertain demand in each period. Using a scenario tree representation of the uncertainty, we formulate a multistage stochastic integer program to adjust the capacity expansion plan dynamically as more information on the uncertainty is revealed. Specifically, in each stage, a decision maker optimizes capacity acquisition and resource allocation to minimize certain risk measures of maintenance and operational cost. We compare it with a two-stage approach that determines the capacity acquisition for all the periods up front. Using expected conditional risk measures (ECRMs), we derive a tight lower bound and an upper bound for the gaps between the optimal objective values of risk-averse multistage models and their two-stage counterparts. Based on these derived bounds, we present general guidelines on when to solve risk-averse two-stage or multistage models. Furthermore, we propose approximation algorithms to solve the two models more efficiently, which are asymptotically optimal under an expanding market assumption. We conduct numerical studies using randomly generated and real-world instances with diverse sizes, to demonstrate the tightness of the analytical bounds and efficacy of the approximation algorithms. We find that the gaps between risk-averse multistage and two-stage models increase as the variability of the uncertain parameters increases and decrease as the decision maker becomes more risk-averse. Moreover, stagewise-dependent scenario tree attains much higher gaps than stagewise-independent counterpart, while the latter produces tighter analytical bounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小虾米完成签到,获得积分10
2秒前
3秒前
3秒前
冰魂应助郭郭采纳,获得30
4秒前
4秒前
独特听芹完成签到,获得积分10
4秒前
5秒前
爆米花应助卓Celina采纳,获得10
6秒前
8秒前
哈哈哈发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
宇哈哈完成签到,获得积分10
9秒前
11秒前
宇哈哈发布了新的文献求助10
12秒前
风趣小蜜蜂完成签到,获得积分10
12秒前
12秒前
Axe关闭了Axe文献求助
12秒前
14秒前
lome发布了新的文献求助10
14秒前
大晨完成签到,获得积分10
15秒前
ybheqiang123456完成签到,获得积分10
15秒前
曹年跃发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助30
17秒前
11111发布了新的文献求助30
18秒前
19秒前
激情的剑封完成签到,获得积分10
20秒前
贪玩手链发布了新的文献求助10
21秒前
鹿阿布发布了新的文献求助10
21秒前
22秒前
23秒前
赵柄尧完成签到,获得积分10
23秒前
来瓶养乐多完成签到,获得积分10
24秒前
科研通AI2S应助曹年跃采纳,获得10
24秒前
shiqiang mu应助曹年跃采纳,获得10
24秒前
25秒前
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870639
求助须知:如何正确求助?哪些是违规求助? 3412814
关于积分的说明 10681193
捐赠科研通 3137242
什么是DOI,文献DOI怎么找? 1730744
邀请新用户注册赠送积分活动 834321
科研通“疑难数据库(出版商)”最低求助积分说明 781142