极限学习机
粒子群优化
高电子迁移率晶体管
氮化镓
均方误差
一般化
放大器
计算机科学
非线性系统
控制理论(社会学)
晶体管
电子工程
算法
材料科学
工程类
数学
人工智能
物理
人工神经网络
统计
电气工程
纳米技术
图层(电子)
数学分析
电压
CMOS芯片
量子力学
控制(管理)
作者
Qian Lin,Mei‐Qian Wang
出处
期刊:Micromachines
[MDPI AG]
日期:2024-08-05
卷期号:15 (8): 1008-1008
摘要
In order to solve the performance prediction and design optimization of power amplifiers (PAs), the performance parameters of Gallium Nitride high-electron-mobility transistor (GaN HEMT) PAs at different temperatures are modeled based on the particle swarm optimization–extreme learning machine (PSO-ELM) and extreme learning machine (ELM) in this paper. Then, it can be seen that the prediction accuracy of the PSO-ELM model is superior to that of ELM with a minimum mean square error (MSE) of 0.0006, which indicates the PSO-ELM model has a stronger generalization ability when dealing with the nonlinear relationship between temperature and PA performance. Therefore, this investigation can provide vital theoretical support for the performance optimization of PA design.
科研通智能强力驱动
Strongly Powered by AbleSci AI