Self-Supervised Denoising through Independent Cascade Graph Augmentation for Robust Social Recommendation

级联 计算机科学 降噪 人工智能 图形 推荐系统 机器学习 模式识别(心理学) 理论计算机科学 工程类 化学工程
作者
Youchen Sun,Zhu Sun,Yingpeng Du,Jie Zhang,Yew-Soon Ong
标识
DOI:10.1145/3637528.3671958
摘要

Social Recommendation (SR) typically exploits neighborhood influence in the social network to enhance user preference modeling. However, users' intricate social behaviors may introduce noisy social connections for user modeling and harm the models' robustness. Existing solutions to alleviate social noise either filter out the noisy connections or generate new potential social connections. Due to the absence of labels, the former approaches may retain uncertain connections for user preference modeling while the latter methods may introduce additional social noise. Through data analysis, we discover that (1) social noise likely comes from the connected users with low preference similarity; and (2) Opinion Leaders (OLs) play a pivotal role in influence dissemination, surpassing high-similarity neighbors, regardless of their preference similarity with trusting peers. Guided by these observations, we propose a novel Self-Supervised Denoising approach through Independent Cascade Graph Augmentation, for more robust SR. Specifically, we employ the independent cascade diffusion model to generate an augmented graph view, which traverses the social graph and activates the edges in sequence to simulate the cascading influence spread. To steer the augmentation towards a denoised social graph, we (1) introduce a hierarchical contrastive loss to prioritize the activation of OLs first, followed by high-similarity neighbors, while weakening the low-similarity neighbors; and (2) integrate an information bottleneck based contrastive loss, aiming to minimize mutual information between original and augmented graphs yet preserve sufficient information for improved SR. Experiments conducted on two public datasets demonstrate that our model outperforms the state-of-the-art while also exhibiting higher robustness to different extents of social noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小二郎应助青青草采纳,获得10
2秒前
2秒前
wisper发布了新的文献求助10
3秒前
3秒前
九九完成签到,获得积分10
4秒前
哈哈哈哈呵完成签到,获得积分10
4秒前
文献发布了新的文献求助10
5秒前
Miya发布了新的文献求助10
5秒前
5秒前
7秒前
桃喜芒芒发布了新的文献求助10
7秒前
waitfantasy发布了新的文献求助10
8秒前
8秒前
aiqiangyu发布了新的文献求助10
8秒前
10秒前
11秒前
JamesPei应助wisper采纳,获得10
11秒前
12秒前
Ella发布了新的文献求助10
12秒前
14秒前
15秒前
Banff发布了新的文献求助10
15秒前
15秒前
水木年华完成签到,获得积分10
15秒前
16秒前
tubaba8848完成签到,获得积分10
16秒前
青青草发布了新的文献求助10
17秒前
ygg发布了新的文献求助30
18秒前
zho发布了新的文献求助10
21秒前
超级无敌暴龙战士完成签到,获得积分10
22秒前
23秒前
23秒前
大个应助老詹头采纳,获得10
24秒前
aoao完成签到,获得积分10
24秒前
杨大泡泡完成签到 ,获得积分10
24秒前
linney0325完成签到,获得积分10
25秒前
多多关注了科研通微信公众号
25秒前
giao发布了新的文献求助10
26秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3912996
求助须知:如何正确求助?哪些是违规求助? 3458330
关于积分的说明 10899834
捐赠科研通 3184701
什么是DOI,文献DOI怎么找? 1760415
邀请新用户注册赠送积分活动 851501
科研通“疑难数据库(出版商)”最低求助积分说明 792734