Ischemic Stroke Segmentation by Transformer and Convolutional Neural Network Using Few-Shot Learning

计算机科学 卷积神经网络 变压器 分割 人工智能 人工神经网络 弹丸 机器学习 电气工程 工程类 电压 有机化学 化学
作者
Fatima Alshehri,Ghulam Muhammad
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (12): 1-21 被引量:2
标识
DOI:10.1145/3699513
摘要

Stroke is a major factor in causing disability and fatalities. Doctors use computerized tomography (CT) and magnetic resonance imaging (MRI) scans to assess the severity of a stroke. Automatic image segmentation can help doctors diagnose strokes more quickly and accurately, but it is challenging due to the variability of stroke lesions and the limited availability of labeled data. Deep learning is the cutting-edge technique of machine learning and artificial intelligence, which needs an extensive labeled dataset for effective training. Unfortunately, in the medical domain, the availability of labeled data is severely limited, posing a challenge for conventional deep- learning approaches. In this article, we introduce a system that utilizes deep learning in the form of fusing transformer-based and convolutional neural network (CNN)-based features and few-shot learning techniques to segment ischemic strokes in multimedia MRIs. To accomplish this, we employ two different methods. The first method involves parallel fusion, where we combine CNN-based and transformer-based features. The second method utilizes serial fusion, combining CNN-based and transformer models using few-shot learning. Through the integration of transformer and CNN models, we can extract both global and local features and enhance the system's performance. Moreover, we tackle the issue of limited labeled data by integrating few-shot learning techniques. Additionally, our system optimizes efficiency by selecting only the slices with lesions, disregarding unlesioned slices. The system under consideration is trained with the BraTS2020 dataset, evaluated on the ISLES 2015 dataset, and contrasted the performance with cutting-edge systems. The suggested system attains a dice coefficient score of 0.76, surpassing the scores of previous cutting-edge systems by a substantial margin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小步快跑完成签到,获得积分10
1秒前
李爱国应助伶俐楷瑞采纳,获得30
1秒前
wongcheng完成签到,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
拼搏的明轩完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
yydragen应助科研通管家采纳,获得80
2秒前
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
巫马炎彬完成签到,获得积分10
3秒前
无花果应助WangZD采纳,获得10
3秒前
苹果河马完成签到,获得积分10
3秒前
霸气的匕完成签到,获得积分10
5秒前
贺贺完成签到,获得积分10
6秒前
华仔应助小小小先生采纳,获得10
6秒前
媛媛完成签到 ,获得积分10
6秒前
Ingrid_26完成签到,获得积分10
6秒前
7秒前
腼腆的晟睿完成签到,获得积分10
7秒前
General完成签到 ,获得积分10
7秒前
小王爱学习完成签到 ,获得积分10
7秒前
陈木木完成签到,获得积分10
7秒前
8秒前
東南風完成签到,获得积分10
8秒前
8秒前
9秒前
牛马婕完成签到,获得积分10
9秒前
cc关闭了cc文献求助
10秒前
10秒前
supermark123发布了新的文献求助10
10秒前
多情自古空余恨完成签到,获得积分10
11秒前
幽默万天完成签到,获得积分10
11秒前
复杂千雁完成签到 ,获得积分10
11秒前
范晓阳完成签到 ,获得积分10
11秒前
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4236893
求助须知:如何正确求助?哪些是违规求助? 3770790
关于积分的说明 11842498
捐赠科研通 3426965
什么是DOI,文献DOI怎么找? 1880823
邀请新用户注册赠送积分活动 933354
科研通“疑难数据库(出版商)”最低求助积分说明 840252