Human-like object concept representations emerge naturally in multimodal large language models

分类 概念化 可解释性 认知科学 对象(语法) 认知 计算机科学 感知 认知心理学 心理学 认知建筑学 人工智能 自然语言处理 神经科学
作者
Huiguang He,Changde Du,Kaicheng Fu,Bin Wen,Yi Sun,Jie Peng,Wei Wei,Ying Gao,Shengpei Wang,Chuncheng Zhang,Jinpeng Li,Shuang Qiu,Le Chang
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-4641719/v1
摘要

Abstract The conceptualization and categorization of natural objects in the human mind have long intrigued cognitive scientists and neuroscientists, offering crucial insights into human perception and cognition. Recently, the rapid development of Large Language Models (LLMs) has raised the attractive question of whether these models can also develop human-like object representations through exposure to vast amounts of linguistic and multimodal data. In this study, we combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in LLMs correlate with those of humans. By collecting large-scale datasets of 4.7 million triplet judgments from LLM and Multimodal LLM (MLLM), we were able to derive low-dimensional embeddings that capture the underlying similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations. Interestingly, the interpretability of the dimensions underlying these embeddings suggests that LLM and MLLM have developed human-like conceptual representations of natural objects. Further analysis demonstrated strong alignment between the identified model embeddings and neural activity patterns in many functionally defined brain ROIs (e.g., EBA, PPA, RSC and FFA). This provides compelling evidence that the object representations in LLMs, while not identical to those in the human, share fundamental commonalities that reflect key schemas of human conceptual knowledge. This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助刘成采纳,获得10
刚刚
内向初瑶发布了新的文献求助10
刚刚
英姑应助YLT采纳,获得10
1秒前
1秒前
别当真完成签到 ,获得积分10
1秒前
1秒前
哈哈发布了新的文献求助10
1秒前
2秒前
安静的念烟完成签到 ,获得积分10
2秒前
风xiao完成签到 ,获得积分10
2秒前
小白发布了新的文献求助10
2秒前
方老师完成签到,获得积分10
2秒前
酱豆豆发布了新的文献求助10
2秒前
螺蛳粉发布了新的文献求助10
4秒前
简单白风完成签到 ,获得积分10
4秒前
诺诺完成签到,获得积分20
4秒前
4秒前
斯文败类应助123采纳,获得30
4秒前
xxk关闭了xxk文献求助
4秒前
5秒前
lzz发布了新的文献求助10
5秒前
5秒前
5秒前
洪文完成签到,获得积分10
6秒前
6秒前
7秒前
顾矜应助zzzjh采纳,获得10
7秒前
科研通AI5应助小白采纳,获得10
7秒前
北陆小猫发布了新的文献求助10
8秒前
Ava应助薯片片采纳,获得10
8秒前
8秒前
诺诺发布了新的文献求助10
8秒前
8秒前
leaolf应助等待的幼晴采纳,获得10
9秒前
dadii完成签到,获得积分10
9秒前
9秒前
9秒前
白马醉春风关注了科研通微信公众号
9秒前
张张发布了新的文献求助10
10秒前
万能图书馆应助lcy采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4712587
求助须知:如何正确求助?哪些是违规求助? 4076344
关于积分的说明 12606115
捐赠科研通 3778732
什么是DOI,文献DOI怎么找? 2087285
邀请新用户注册赠送积分活动 1113767
科研通“疑难数据库(出版商)”最低求助积分说明 991279