作者
Shikai Geng,Xing-yu Liu,Fangzhu Wan,Li Chen,Wanzun Lin,Wei Hu,Ziyu Le,Huaiyuan Chen,Qingting Huang,Fengtao Su,Chunlin Shao,Jiade J. Lu,Lin Kong
摘要
Introduction: Despite significant advances in the comprehensive treatment of nasopharyngeal carcinoma (NPC), local recurrence or distant metastasis still occurs in a considerable proportion of patients, leading to poor outcomes and posing a significant clinical challenge. The current therapeutic agent, Triptonide (TN), has shown potential efficacy in modulating cellular autophagy, suggesting its therapeutic promise for treating NPC. However, the precise molecular targets and mechanisms underlying TN’s role in NPC remain to be elucidated. Methods: Initially, relevant targets for TN in the treatment of NPC were identified through public databases. Next, network pharmacology and bioinformatics analyses were employed to pinpoint the top 15 hub targets and critical signaling pathways involved in TN’s therapeutic action. Finally, experimental validation, including a range of molecular assays, was conducted to investigate the cellular effects of TN treatment, such as apoptosis induction, migration inhibition, Caspase-3 activation, mitochondrial dysfunction, autophagy-related gene expression, and TFAM level detection, thereby confirming the essential genes and pathways. Results: A total of 31 potential molecular targets for TN in NPC were identified, with 27 genes confirmed through autophagy-related gene analysis. Among these, the top 15 hub genes included RELA, CASP8, NFKBIA, PPARG, PTGS2, MAPK14, MAPK8, HDAC1, ERBB2, CASP1, TERT, AR, CDK1, PGR, and HDAC6. TN was found to activate the MAPK signaling pathway. In vitro, TN induced NPC cell apoptosis via increased ROS, MAPK14 activation, and Caspase-3 cleavage. It disrupted mitochondrial function (reduced membrane potential, decreased copy number, enhanced fission), inhibited mTOR and RELA phosphorylation, and promoted autophagy. TN also caused S-phase arrest, reduced CDH3, and increased CDH1. Lipoic acid partially reversed TN-induced cytotoxicity. Discussion: TN exerts anti-NPC effects primarily through MAPK pathway activation and autophagy induction. Key targets mediating these effects include RELA, CASP8, PPARG, MAPK14, MAPK8, HDAC1, ERBB2, and CASP1. The reversal by lipoic acid implicates ROS in TN's mechanism. The disruption of mitochondrial function represents a critical facet of its action. Conclusion: TN demonstrates potential as a therapeutic agent for NPC, primarily through activation of the MAPK signaling pathway and autophagy. Key targets, including RELA, CASP8, PPARG, MAPK14, MAPK8, HDAC1, ERBB2, and CASP1, have been identified as critical mediators of TN’s effects, highlighting its role in promoting autophagy and enhancing NPC treatment.