亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Where and What: Contextual Dynamics-aware Anomaly Detection in Surveillance Videos.

异常检测 计算机科学 人工智能 计算机视觉 目标检测 模式识别(心理学)
作者
Dong H. Ahn,Yong-Jin Jo,Dong Hee Kim,Gi Pyo Nam,Jae-Ho Han,Haksub Kim
出处
期刊:PubMed 卷期号:PP
标识
DOI:10.1109/tip.2025.3623392
摘要

In surveillance environments, detecting anomalies requires understanding the contextual dynamics of the environment, human behaviors, and movements within a scene. Effective anomaly detection must address both the where and what of events, but existing approaches such as unimodal action-based methods or LLM-integrated multimodal frameworks have limitations. These methods either rely on implicit scene information, making it difficult to localize where anomalies occur, or fail to adapt to surveillance specific challenges such as view changes, subtle actions, low light conditions, and crowded scenes. As a result, these challenges hinder accurate detection of what occurs. To overcome these limitations, our system takes advantage of features from a lightweight scene classification model to discern where an event occurs, acquiring explicit location-based context. To identify what events occur, it focuses on atomic actions, which remain underexplored in this field and are better suited to interpreting intricate abnormal behaviors than conventional abstract action features. To achieve robust anomaly detection, the proposed Temporal-Semantic Relationship Network (TSRN) models spatio-temporal relationships among multimodal features and employs a Segment-selective Focal Margin loss (SFML) to effectively address class imbalance, outperforming conventional MIL-based methods. Compared to existing methods, experimental results demonstrate that our system significantly reduces false alarms while maintaining robustness across diverse scenarios. Quantitative and qualitative evaluations on public datasets validate the practical effectiveness of the proposed method for real-world surveillance applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
虚拟的凌旋完成签到 ,获得积分10
5秒前
14秒前
15秒前
yqt发布了新的文献求助10
20秒前
兮豫完成签到 ,获得积分10
20秒前
小土豆完成签到 ,获得积分10
23秒前
无花果应助文心采纳,获得10
25秒前
Criminology34举报小小求助涉嫌违规
26秒前
30秒前
小哈完成签到 ,获得积分10
31秒前
苏晓醒完成签到,获得积分10
33秒前
Ava应助张张采纳,获得10
35秒前
38秒前
39秒前
DR发布了新的文献求助30
42秒前
42秒前
mingjing完成签到 ,获得积分10
46秒前
兴奋奇异果完成签到,获得积分10
50秒前
朝槿完成签到 ,获得积分10
52秒前
独自人生发布了新的文献求助10
54秒前
852应助今天没桃课采纳,获得10
57秒前
1分钟前
bbhk完成签到,获得积分10
1分钟前
1分钟前
1分钟前
熊熊完成签到 ,获得积分10
1分钟前
咪咪咪咪咪完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
DR发布了新的文献求助30
1分钟前
桐桐应助anew_tape采纳,获得50
1分钟前
1分钟前
笑笑完成签到 ,获得积分10
1分钟前
欣喜的人龙完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418230
求助须知:如何正确求助?哪些是违规求助? 4533932
关于积分的说明 14142830
捐赠科研通 4450209
什么是DOI,文献DOI怎么找? 2441129
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079