Serum metabolomic profiling reveals potential biomarkers in systemic sclerosis

代谢组学 纤维化 代谢组 内科学 医学 OPL公司 单变量分析 代谢物 胃肠病学 病理 多元分析 生物 生物信息学 化学 氢键 有机化学 分子
作者
Muyao Guo,Di Liu,Yu Jiang,Weilin Chen,Lijuan Zhao,Ding Bao,Yisha Li,Jörg H. W. Distler,Honglin Zhu
出处
期刊:Metabolism-clinical and Experimental [Elsevier BV]
卷期号:144: 155587-155587 被引量:15
标识
DOI:10.1016/j.metabol.2023.155587
摘要

Background Systemic sclerosis (SSc) is a chronic and systemic autoimmune disease marked by the skin and visceral fibrosis. Metabolic alterations have been found in SSc patients; however, serum metabolomic profiling has not been thoroughly conducted. Our study aimed to identify alterations in the metabolic profile in both SSc patients before and during treatment, as well as in mouse models of fibrosis. Furthermore, the associations between metabolites and clinical parameters and disease progression were explored. Methods High-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS)/MS was performed in the serum of 326 human samples and 33 mouse samples. Human samples were collected from 142 healthy controls (HC), 127 newly diagnosed SSc patients without treatment (SSc baseline), and 57 treated SSc patients (SSc treatment). Mouse serum samples were collected from 11 control mice (NaCl), 11 mice with bleomycin (BLM)-induced fibrosis and 11 mice with hypochlorous acid (HOCl)-induced fibrosis. Both univariate analysis and multivariate analysis (orthogonal partial least-squares discriminate analysis (OPLS-DA)) were conducted to unravel differently expressed metabolites. KEGG pathway enrichment analysis was performed to characterize the dysregulated metabolic pathways in SSc. Associations between metabolites and clinical parameters of SSc patients were identified by Pearson's or Spearman's correlation analysis. Machine learning (ML) algorithms were applied to identify the important metabolites that have the potential to predict the progression of skin fibrosis. Results The newly diagnosed SSc patients without treatment showed a unique serum metabolic profile compared to HC. Treatment partially corrected the metabolic changes in SSc. Some metabolites (phloretin 2'-O-glucuronide, retinoyl b-glucuronide, all-trans-retinoic acid, and betaine) and metabolic pathways (starch and sucrose metabolism, proline metabolism, androgen and estrogen metabolism, and tryptophan metabolism) were dysregulated in new-onset SSc, but restored upon treatment. Some metabolic changes were associated with treatment response in SSc patients. Metabolic changes observed in SSc patients were mimicked in murine models of SSc, indicating that they may reflect general metabolic changes associated with fibrotic tissue remodeling. Several metabolic changes were associated with SSc clinical parameters. The levels of allysine and all-trans-retinoic acid were negatively correlated, while D-glucuronic acid and hexanoyl carnitine were positively correlated with modified Rodnan skin score (mRSS). In addition, a panel of metabolites including proline betaine, phloretin 2'-O-glucuronide, gamma-linolenic acid and L-cystathionine were associated with the presence of interstitial lung disease (ILD) in SSc. Specific metabolites identified by ML algorithms, such as medicagenic acid 3-O-b-D-glucuronide, 4'-O-methyl-(−)-epicatechin-3'-O-beta-glucuronide, valproic acid glucuronide, have the potential to predict the progression of skin fibrosis. Conclusions Serum of SSc patients demonstrates profound metabolic changes. Treatment partially restored the metabolic changes in SSc. Moreover, certain metabolic changes were associated with clinical manifestations such as skin fibrosis and ILD, and could predict the progression of skin fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shunli完成签到,获得积分10
刚刚
一1完成签到 ,获得积分10
3秒前
wure10完成签到 ,获得积分10
3秒前
LL完成签到,获得积分10
5秒前
香蕉觅云应助李振博采纳,获得10
5秒前
QQ完成签到,获得积分10
6秒前
Salamenda完成签到,获得积分10
6秒前
mr完成签到 ,获得积分10
7秒前
8秒前
yukang完成签到,获得积分10
9秒前
感动的小鸽子完成签到,获得积分10
10秒前
Likz完成签到,获得积分10
10秒前
相信相信的力量完成签到,获得积分10
12秒前
山茶桂子完成签到,获得积分20
12秒前
王倩的老公完成签到 ,获得积分10
12秒前
rh完成签到,获得积分10
13秒前
梦丸完成签到 ,获得积分10
13秒前
13秒前
yeye应助yukang采纳,获得20
14秒前
xxxx发布了新的文献求助10
15秒前
16秒前
xiuxiu_27完成签到 ,获得积分10
16秒前
16秒前
16秒前
乐乐完成签到,获得积分10
16秒前
qqq完成签到 ,获得积分10
17秒前
美丽的仙人掌完成签到,获得积分10
18秒前
跳跃的语柔完成签到 ,获得积分10
18秒前
clock完成签到 ,获得积分10
19秒前
李振博发布了新的文献求助10
19秒前
20秒前
xiaxia42完成签到 ,获得积分10
24秒前
耀阳完成签到 ,获得积分10
25秒前
26秒前
加一完成签到,获得积分10
27秒前
凡迪亚比完成签到 ,获得积分10
27秒前
hitzwd完成签到,获得积分10
27秒前
默默完成签到 ,获得积分10
27秒前
27秒前
英俊枫完成签到,获得积分10
28秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4048732
求助须知:如何正确求助?哪些是违规求助? 3586402
关于积分的说明 11395610
捐赠科研通 3313119
什么是DOI,文献DOI怎么找? 1822745
邀请新用户注册赠送积分活动 894690
科研通“疑难数据库(出版商)”最低求助积分说明 816466