Predicting Road Traffic Risks with CNN-and-LSTM Learning Over Spatio-Temporal and Multi-Feature Traffic Data

计算机科学 深度学习 流量(计算机网络) 人工智能 浮动车数据 数据挖掘 智能交通系统 机器学习 数据建模 交通拥挤 运输工程 工程类 计算机安全 数据库
作者
Kun-Yu Lin,Peiyi Liu,Po‐Kai Wang,Chih‐Lin Hu,Ying Cai
标识
DOI:10.1109/sse60056.2023.00049
摘要

Offering traffic safety information to drivers and passengers is one of essential services towards the smart city. Recent research utilizes AI models to analyze the collection of IoT-driven data in transportation environments. Exploring unveiled characteristics of traffic information to improve traffic control and accident prevention on roads, this way becomes plausible. Prior studies exploited various sorts of spatio-temporal traffic data to achieve the traffic prediction using deep learning models. Without understanding the complexity of spatio-temporal data, however, their efforts have not fully shown the effectiveness of deep learning-based traffic prediction and risk presentation. In this paper, our study first applies the Pearson correlation coefficient to clarify that traffic accidents appear in high correlation with time and space patterns. We identify multiple features from traffic domains, and employ CNN first and then LSTM learning techniques on several volumes of spatio-temporal traffic data, including weather, time, traffic flow, and historical traffic accidents and locations, etc. Our study shows that the combination of CNN and LSTM learning on spatio-temporal traffic data is applicable and useful for traffic risk prediction. Under experiments and demonstrations with actual traffic datasets, our proposed traffic risk prediction scheme, called CLwST, can exhibit more accurate results, faster convergence and lower loss in comparison with the two prior studies based on LSTM and ConvLSTM schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xt发布了新的文献求助80
刚刚
xxx发布了新的文献求助10
刚刚
asdfqwer应助xzy998采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
3秒前
haul完成签到 ,获得积分20
4秒前
背后访风完成签到 ,获得积分10
5秒前
一个小柑橘完成签到,获得积分10
8秒前
12秒前
99完成签到,获得积分10
13秒前
祁闲蒽发布了新的文献求助20
15秒前
花开富贵完成签到,获得积分10
16秒前
wanci应助研友_8YKe5n采纳,获得10
16秒前
科研通AI5应助111采纳,获得10
16秒前
19秒前
lcj完成签到,获得积分10
22秒前
四福祥发布了新的文献求助10
24秒前
希拉里罗德姆完成签到 ,获得积分10
27秒前
xx完成签到,获得积分10
27秒前
沉静的浩然完成签到,获得积分10
27秒前
32秒前
阳佟冬卉完成签到,获得积分10
34秒前
Rue完成签到,获得积分10
35秒前
osel发布了新的文献求助30
35秒前
lewu完成签到 ,获得积分10
37秒前
holi完成签到 ,获得积分10
37秒前
39秒前
Hello应助pan采纳,获得10
39秒前
slb1319完成签到,获得积分10
41秒前
xxh完成签到,获得积分10
41秒前
畅快代柔完成签到 ,获得积分10
42秒前
钟婷婷发布了新的文献求助30
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320