Deep learning-based companion robot on senile dementia patients

医学 痴呆 统计显著性 小型精神状态检查 阿尔茨海默病 精神状态 疾病 精神科 内科学
作者
Tao Jin,Songzhe Fu,Danping Wu,Jiang Yong-zeng,Yiping Wang
出处
期刊:CNS spectrums [Cambridge University Press]
卷期号:28 (S2): S3-S3
标识
DOI:10.1017/s1092852923002547
摘要

Background There are currently at least 50 million dementia patients worldwide, and this number is expected to reach 152 million by 2050, of which about 60-70% will be Alzheimer’s patients. The companion robot based on deep learning is a product of the development of artificial intelligence technology, which is of great significance to the physical and mental health of the elderly, so it is used in the research on the treatment of Alzheimer’s patients. Subjects and Methods 100 patients with Alzheimer’s disease in a hospital were selected for the study, and 50 patients were randomly divided into experimental group and control group. In the experiment, 50 patients with Alzheimer in the experimental group used a companion robot based on deep learning for auxiliary treatment while carrying out daily treatment. The control group of 50 patients did not receive any adjuvant therapy in addition to daily treatment. After three months of treatment, the study used the 3D-CAM and the mini–mental state examination (MMSE) to collect the treatment status of all patients, and used the SPSS23.0 statistical software to statistically analyze the collected data. Results After statistical analysis, the results of the two groups were obtained. The scores of 3D-CAM and MMSE in the experimental group were significantly higher than those in the control group and the difference was statistically significant. Conclusions Companion robots based on deep learning are helpful in the treatment of Alzheimer’s patients. They can improve the therapeutic effect and have certain social value. Acknowledgement The Fundamental Research Funds in Heilongjiang Provincial Universities (No.135309356); Qiqihar University Young Teachers’ Scientific Research Initiation Support Program (No.2012k-M17).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Suica采纳,获得10
刚刚
思源应助韶孤容采纳,获得10
3秒前
45343完成签到,获得积分20
4秒前
orixero应助666采纳,获得10
8秒前
9秒前
朝歌发布了新的文献求助10
10秒前
心想事成完成签到,获得积分10
10秒前
10秒前
11秒前
李木子完成签到 ,获得积分10
11秒前
11秒前
12秒前
吴晓敏发布了新的文献求助10
14秒前
吴彦祖完成签到,获得积分20
15秒前
云过半山发布了新的文献求助10
15秒前
俊鱼完成签到,获得积分10
16秒前
17秒前
18秒前
可爱小哪吒完成签到,获得积分10
18秒前
45343发布了新的文献求助10
19秒前
宋宋完成签到,获得积分10
20秒前
Akim应助北风采纳,获得10
21秒前
666发布了新的文献求助10
24秒前
25秒前
26秒前
29秒前
29秒前
29秒前
30秒前
32秒前
32秒前
科目三应助balabala采纳,获得10
32秒前
xzy998发布了新的文献求助10
33秒前
33秒前
oia完成签到,获得积分10
34秒前
北风发布了新的文献求助10
34秒前
xueyixiaogou发布了新的文献求助10
36秒前
只只呀发布了新的文献求助10
37秒前
土豆发布了新的文献求助10
37秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415