亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applications of machine learning in microbial natural product drug discovery

药物发现 业务流程发现 化学空间 计算机科学 天然产物 过程(计算) 计算生物学 生化工程 数据科学 人工智能 机器学习 生物 生物信息学 工程类 在制品 业务流程 生物化学 运营管理 操作系统 业务流程建模
作者
Autumn Arnold,Jeremie Alexander,Gary Liu,Jonathan Stokes
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:18 (11): 1259-1272 被引量:7
标识
DOI:10.1080/17460441.2023.2251400
摘要

ABSTRACTIntroduction Natural products (NPs) are a desirable source of new therapeutics due to their structural diversity and evolutionarily optimized bioactivities. NPs and their derivatives account for roughly 70% of approved pharmaceuticals. However, the rate at which novel NPs are discovered has decreased. To accelerate the microbial NP discovery process, machine learning (ML) is being applied to numerous areas of NP discovery and development.Areas covered This review explores the utility of ML at various phases of the microbial NP drug discovery pipeline, discussing concrete examples throughout each major phase: genome mining, dereplication, and biological target prediction. Moreover, the authors discuss how ML approaches can be applied to semi-synthetic approaches to drug discovery.Expert opinion Despite the important role that microbial NPs play in the development of novel drugs, their discovery has declined due to challenges associated with the conventional discovery process. ML is positioned to overcome these limitations given its ability to model complex datasets and generalize to novel chemical and sequence space. Unsurprisingly, ML comes with its own limitations that must be considered for its successful implementation. The authors stress the importance of continuing to build high quality and open access NP datasets to further increase the utility of ML in NP discovery.KEYWORDS: Artificial IntelligenceMachine LearningNatural ProductsDrug DiscoveryGenome MiningDereplicationTarget Prediction Article highlights Microbial natural products are a promising source of novel therapeutics.Machine learning approaches are being increasingly applied to relieve bottlenecks throughout the microbial natural product discovery process.Machine learning has allowed for the exploration of novel biosynthetic gene clusters due to its ability to generalize to new sequence spaces.Machine learning has been applied to the interpretation of metabolomic data, which can be leveraged for the efficient dereplication of microbial secondary metabolites.Machine learning has facilitated biological target prediction, providing insight into the mechanisms of action of natural products.Generative machine learning models have improved the design of natural product-inspired chemical libraries by preserving various chemical features that are important for the bioactivity of natural products.Declaration of interestJM Stokes is co-founder and scientific director of Phare Bio. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThe authors are funded by the David Braley Centre for Antibiotic Discovery, the Natural Sciences and Engineering Research Council of Canada and the Weston Family Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DYXX完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
斯文的难破完成签到 ,获得积分10
1分钟前
美好的鸽子完成签到,获得积分10
1分钟前
2分钟前
hank完成签到 ,获得积分10
2分钟前
2分钟前
alex_zhao完成签到,获得积分10
2分钟前
2分钟前
2分钟前
张张发布了新的文献求助10
2分钟前
3分钟前
张张发布了新的文献求助10
3分钟前
MartinaLZ应助张张采纳,获得10
3分钟前
科研通AI2S应助张张采纳,获得10
3分钟前
可爱的函函应助张张采纳,获得10
3分钟前
满意访冬完成签到,获得积分20
4分钟前
4分钟前
科研通AI5应助满意访冬采纳,获得10
4分钟前
渡己完成签到 ,获得积分10
4分钟前
Oracle应助bruna采纳,获得100
4分钟前
wanjingwan完成签到 ,获得积分10
5分钟前
5分钟前
提桶跑路完成签到 ,获得积分10
5分钟前
5分钟前
满意访冬发布了新的文献求助10
5分钟前
于清绝完成签到 ,获得积分10
6分钟前
昏睡的乌冬面完成签到 ,获得积分10
6分钟前
小白菜完成签到,获得积分10
6分钟前
浮生若梦完成签到,获得积分10
6分钟前
搜集达人应助YD采纳,获得10
6分钟前
7分钟前
YD发布了新的文献求助10
7分钟前
7分钟前
Dannnn发布了新的文献求助10
7分钟前
潇洒新筠发布了新的文献求助10
7分钟前
stuuuuuuuuuuudy完成签到 ,获得积分10
8分钟前
asdwind完成签到,获得积分10
8分钟前
little完成签到,获得积分10
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212809
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667308
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229