Applications of machine learning in microbial natural product drug discovery

药物发现 业务流程发现 化学空间 计算机科学 天然产物 过程(计算) 计算生物学 生化工程 数据科学 人工智能 机器学习 生物 生物信息学 工程类 在制品 生物化学 运营管理 业务流程建模 操作系统 业务流程
作者
Autumn Arnold,Jeremie Alexander,Gary Liu,Jonathan Stokes
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:18 (11): 1259-1272 被引量:14
标识
DOI:10.1080/17460441.2023.2251400
摘要

ABSTRACTIntroduction Natural products (NPs) are a desirable source of new therapeutics due to their structural diversity and evolutionarily optimized bioactivities. NPs and their derivatives account for roughly 70% of approved pharmaceuticals. However, the rate at which novel NPs are discovered has decreased. To accelerate the microbial NP discovery process, machine learning (ML) is being applied to numerous areas of NP discovery and development.Areas covered This review explores the utility of ML at various phases of the microbial NP drug discovery pipeline, discussing concrete examples throughout each major phase: genome mining, dereplication, and biological target prediction. Moreover, the authors discuss how ML approaches can be applied to semi-synthetic approaches to drug discovery.Expert opinion Despite the important role that microbial NPs play in the development of novel drugs, their discovery has declined due to challenges associated with the conventional discovery process. ML is positioned to overcome these limitations given its ability to model complex datasets and generalize to novel chemical and sequence space. Unsurprisingly, ML comes with its own limitations that must be considered for its successful implementation. The authors stress the importance of continuing to build high quality and open access NP datasets to further increase the utility of ML in NP discovery.KEYWORDS: Artificial IntelligenceMachine LearningNatural ProductsDrug DiscoveryGenome MiningDereplicationTarget Prediction Article highlights Microbial natural products are a promising source of novel therapeutics.Machine learning approaches are being increasingly applied to relieve bottlenecks throughout the microbial natural product discovery process.Machine learning has allowed for the exploration of novel biosynthetic gene clusters due to its ability to generalize to new sequence spaces.Machine learning has been applied to the interpretation of metabolomic data, which can be leveraged for the efficient dereplication of microbial secondary metabolites.Machine learning has facilitated biological target prediction, providing insight into the mechanisms of action of natural products.Generative machine learning models have improved the design of natural product-inspired chemical libraries by preserving various chemical features that are important for the bioactivity of natural products.Declaration of interestJM Stokes is co-founder and scientific director of Phare Bio. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThe authors are funded by the David Braley Centre for Antibiotic Discovery, the Natural Sciences and Engineering Research Council of Canada and the Weston Family Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助mmr采纳,获得10
刚刚
11完成签到,获得积分10
刚刚
jrzsy完成签到,获得积分10
刚刚
1秒前
江上挽风吟墨染完成签到,获得积分20
1秒前
王欣瑶完成签到 ,获得积分10
3秒前
3秒前
852应助NeoWu采纳,获得10
3秒前
4秒前
上官若男应助怕黑不惜采纳,获得30
5秒前
5秒前
幸福的小刺猬完成签到 ,获得积分10
5秒前
可达完成签到,获得积分10
6秒前
素心完成签到,获得积分10
7秒前
hkh发布了新的文献求助10
7秒前
xiaolin发布了新的文献求助10
7秒前
endoscopy发布了新的文献求助10
8秒前
9秒前
素心发布了新的文献求助10
10秒前
梁婷发布了新的文献求助10
11秒前
11秒前
12秒前
传奇3应助胖虎采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
13秒前
大模型应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
SciGPT应助科研通管家采纳,获得30
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333098
求助须知:如何正确求助?哪些是违规求助? 3844952
关于积分的说明 12010464
捐赠科研通 3485522
什么是DOI,文献DOI怎么找? 1913123
邀请新用户注册赠送积分活动 956366
科研通“疑难数据库(出版商)”最低求助积分说明 857184