已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Applications of machine learning in microbial natural product drug discovery

药物发现 业务流程发现 化学空间 计算机科学 天然产物 过程(计算) 计算生物学 生化工程 数据科学 人工智能 机器学习 生物 生物信息学 工程类 在制品 业务流程 生物化学 运营管理 操作系统 业务流程建模
作者
Autumn Arnold,Jeremie Alexander,Gary Liu,Jonathan Stokes
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:18 (11): 1259-1272 被引量:14
标识
DOI:10.1080/17460441.2023.2251400
摘要

ABSTRACTIntroduction Natural products (NPs) are a desirable source of new therapeutics due to their structural diversity and evolutionarily optimized bioactivities. NPs and their derivatives account for roughly 70% of approved pharmaceuticals. However, the rate at which novel NPs are discovered has decreased. To accelerate the microbial NP discovery process, machine learning (ML) is being applied to numerous areas of NP discovery and development.Areas covered This review explores the utility of ML at various phases of the microbial NP drug discovery pipeline, discussing concrete examples throughout each major phase: genome mining, dereplication, and biological target prediction. Moreover, the authors discuss how ML approaches can be applied to semi-synthetic approaches to drug discovery.Expert opinion Despite the important role that microbial NPs play in the development of novel drugs, their discovery has declined due to challenges associated with the conventional discovery process. ML is positioned to overcome these limitations given its ability to model complex datasets and generalize to novel chemical and sequence space. Unsurprisingly, ML comes with its own limitations that must be considered for its successful implementation. The authors stress the importance of continuing to build high quality and open access NP datasets to further increase the utility of ML in NP discovery.KEYWORDS: Artificial IntelligenceMachine LearningNatural ProductsDrug DiscoveryGenome MiningDereplicationTarget Prediction Article highlights Microbial natural products are a promising source of novel therapeutics.Machine learning approaches are being increasingly applied to relieve bottlenecks throughout the microbial natural product discovery process.Machine learning has allowed for the exploration of novel biosynthetic gene clusters due to its ability to generalize to new sequence spaces.Machine learning has been applied to the interpretation of metabolomic data, which can be leveraged for the efficient dereplication of microbial secondary metabolites.Machine learning has facilitated biological target prediction, providing insight into the mechanisms of action of natural products.Generative machine learning models have improved the design of natural product-inspired chemical libraries by preserving various chemical features that are important for the bioactivity of natural products.Declaration of interestJM Stokes is co-founder and scientific director of Phare Bio. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThe authors are funded by the David Braley Centre for Antibiotic Discovery, the Natural Sciences and Engineering Research Council of Canada and the Weston Family Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
刚刚
lztong完成签到,获得积分10
1秒前
宋玮发布了新的文献求助30
2秒前
ruopiao应助nani采纳,获得10
2秒前
2秒前
夏夏完成签到 ,获得积分10
4秒前
Vet周发布了新的文献求助10
5秒前
5秒前
彦黄子孙发布了新的文献求助30
5秒前
flyingdodoro发布了新的文献求助10
6秒前
大个应助lztong采纳,获得10
6秒前
整齐乐驹完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
slx完成签到,获得积分10
10秒前
大气思菱完成签到 ,获得积分10
11秒前
在水一方应助嘟嘟图图采纳,获得10
12秒前
12秒前
科研通AI6应助吴巧采纳,获得10
12秒前
是真的不吃鱼完成签到 ,获得积分10
15秒前
pililili发布了新的文献求助10
16秒前
16秒前
17秒前
Akim应助优雅雨柏采纳,获得10
17秒前
17秒前
18秒前
Jenny完成签到,获得积分20
19秒前
liao应助爱打乒乓球采纳,获得30
20秒前
20秒前
zpy发布了新的文献求助10
20秒前
21秒前
23秒前
zy86689492发布了新的文献求助10
23秒前
爆米花应助123采纳,获得10
25秒前
嘟嘟图图发布了新的文献求助10
25秒前
25秒前
Esther发布了新的文献求助10
29秒前
30秒前
liao应助生菜采纳,获得30
32秒前
Xing完成签到,获得积分10
33秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502195
求助须知:如何正确求助?哪些是违规求助? 4598182
关于积分的说明 14462920
捐赠科研通 4531752
什么是DOI,文献DOI怎么找? 2483565
邀请新用户注册赠送积分活动 1466913
关于科研通互助平台的介绍 1439517