Identification of central symptoms of children depression and development of two short version of Children's Depression Inventory: Based on network analysis and machine learning

萧条(经济学) 孤独 悲伤 切断 心理学 儿童抑郁症 精神科 临床心理学 焦虑 愤怒 物理 量子力学 经济 宏观经济学
作者
Chao Zhang,Baojuan Ye,Guo Zhi-fang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:346: 242-251 被引量:3
标识
DOI:10.1016/j.jad.2023.10.146
摘要

Using network analysis to study the central symptoms is important for understanding the mechanism of depression symptoms and selecting items for the short version depression screening scale. This study aimed to identify the central symptoms of depression and develop the short and effective depression screening tools for Chinese rural children. Firstly, the 2458 individuals (Mage = 10.74; SDage = 1.64; 51.2 % were female) were recruited from the rural children's mental health database. Children's Depression Inventory (CDI) was used to assess depression symptoms. Then, network analysis was used to identify the central symptoms of depression. The accuracy, stability, and gender invariance of the depression symptoms network were tested. Finally, a short version of CDI with central symptoms (CDI-SC) and a new CDI-10 (CDI-10-N) were developed by network analysis and feature selection techniques to optimize the existing CDI-10. Their performances in screening depression symptoms were validated by the cutoff threshold and machine learning. The central symptoms of Chinese rural children's depression were sadness, self-hatred, loneliness and self-deprecation. This result was accurate and stable and depression symptoms network has gender invariance. The AUC values of CDI-10-N and CDI-SC are over 0.9. The CDI-10-N has a higher AUC than CDI-10. The optimal cutoff thresholds for CDI-10-N and CDI-SC are 6 and 1. The performance of machine learning on AUC generally outperforms those of cutoff threshold. The central symptoms identified in this study should be highlighted in screening depression symptoms, and CDI-10-N and CDI-SC are effective tools for screening depression symptoms in Chinese rural children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kittykitten完成签到 ,获得积分10
1秒前
Owen应助xingyuwuhen007采纳,获得10
1秒前
1秒前
CodeCraft应助笨笨凡松采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
迷恋小怪兽完成签到,获得积分10
3秒前
abc105完成签到,获得积分10
3秒前
6秒前
Jasper应助刘家成采纳,获得10
6秒前
6秒前
zhuboujs发布了新的文献求助10
6秒前
7秒前
陈芮完成签到,获得积分20
7秒前
正义的土地爷完成签到,获得积分10
7秒前
李健的小迷弟应助jingjun_Li采纳,获得10
7秒前
猴猴发布了新的文献求助10
8秒前
61发布了新的文献求助10
8秒前
群青完成签到,获得积分10
8秒前
8秒前
9秒前
aguyihee发布了新的文献求助30
9秒前
Anoxia发布了新的文献求助10
10秒前
12umi发布了新的文献求助10
10秒前
10秒前
AixGnad完成签到,获得积分10
10秒前
感动的笑翠完成签到,获得积分10
11秒前
走啊完成签到,获得积分10
11秒前
JTTTTJ完成签到,获得积分10
12秒前
12秒前
ANNNNN发布了新的文献求助10
13秒前
绾宸发布了新的文献求助10
13秒前
若有人兮完成签到,获得积分10
14秒前
秀丽的玉米应助Anoxia采纳,获得10
14秒前
朝天椒发布了新的文献求助10
14秒前
走啊发布了新的文献求助10
15秒前
叶世玉发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141