Identification of central symptoms of children depression and development of two short version of Children's Depression Inventory: Based on network analysis and machine learning

萧条(经济学) 孤独 悲伤 切断 心理学 儿童抑郁症 精神科 临床心理学 焦虑 愤怒 量子力学 物理 宏观经济学 经济
作者
Chao Zhang,Baojuan Ye,Guo Zhi-fang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:346: 242-251 被引量:12
标识
DOI:10.1016/j.jad.2023.10.146
摘要

Using network analysis to study the central symptoms is important for understanding the mechanism of depression symptoms and selecting items for the short version depression screening scale. This study aimed to identify the central symptoms of depression and develop the short and effective depression screening tools for Chinese rural children. Firstly, the 2458 individuals (Mage = 10.74; SDage = 1.64; 51.2 % were female) were recruited from the rural children's mental health database. Children's Depression Inventory (CDI) was used to assess depression symptoms. Then, network analysis was used to identify the central symptoms of depression. The accuracy, stability, and gender invariance of the depression symptoms network were tested. Finally, a short version of CDI with central symptoms (CDI-SC) and a new CDI-10 (CDI-10-N) were developed by network analysis and feature selection techniques to optimize the existing CDI-10. Their performances in screening depression symptoms were validated by the cutoff threshold and machine learning. The central symptoms of Chinese rural children's depression were sadness, self-hatred, loneliness and self-deprecation. This result was accurate and stable and depression symptoms network has gender invariance. The AUC values of CDI-10-N and CDI-SC are over 0.9. The CDI-10-N has a higher AUC than CDI-10. The optimal cutoff thresholds for CDI-10-N and CDI-SC are 6 and 1. The performance of machine learning on AUC generally outperforms those of cutoff threshold. The central symptoms identified in this study should be highlighted in screening depression symptoms, and CDI-10-N and CDI-SC are effective tools for screening depression symptoms in Chinese rural children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
淑儿哥哥完成签到,获得积分10
3秒前
3秒前
英俊的铭应助xiaoxioayixi采纳,获得10
3秒前
kiki0808完成签到 ,获得积分10
4秒前
5秒前
6秒前
QUPY发布了新的文献求助10
7秒前
8秒前
10秒前
丘比特应助酷炫的爆米花采纳,获得10
11秒前
12秒前
猪猪猪发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
gmj完成签到,获得积分10
13秒前
14秒前
15秒前
何佳丽发布了新的文献求助10
16秒前
情怀应助Jeremy采纳,获得10
16秒前
dmsoli发布了新的文献求助10
17秒前
17秒前
18秒前
FashionBoy应助懵懂的土豆采纳,获得10
18秒前
18秒前
小二郎应助okl采纳,获得10
19秒前
勤恳曼卉完成签到,获得积分10
19秒前
21秒前
斯文幻儿发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
min发布了新的文献求助10
23秒前
阔达的柠檬完成签到,获得积分10
23秒前
24秒前
所所应助xiaoxioayixi采纳,获得10
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
ChemMa发布了新的文献求助10
26秒前
Zhi发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785790
求助须知:如何正确求助?哪些是违规求助? 5690299
关于积分的说明 15468395
捐赠科研通 4914886
什么是DOI,文献DOI怎么找? 2645402
邀请新用户注册赠送积分活动 1593152
关于科研通互助平台的介绍 1547503