Classification of attention deficit/hyperactivity disorder based on EEG signals using a EEG-Transformer model ∗

脑电图 计算机科学 变压器 人工智能 卷积神经网络 注意缺陷多动障碍 机器学习 模式识别(心理学) 心理学 工程类 神经科学 精神科 电压 电气工程
作者
Yuchao He,Xin Wang,Zijian Győző Yang,Lingbin Xue,Yuming Chen,Junyu Ji,Feng Wan,Subhas Chandra Mukhopadhyay,Lina Men,Michael C. F. Tong,Guanglin Li,Shixiong Chen
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056013-056013 被引量:4
标识
DOI:10.1088/1741-2552/acf7f5
摘要

Abstract Objective . Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in adolescents that can seriously impair a person’s attention function, cognitive processes, and learning ability. Currently, clinicians primarily diagnose patients based on the subjective assessments of the Diagnostic and Statistical Manual of Mental Disorders-5, which can lead to delayed diagnosis of ADHD and even misdiagnosis due to low diagnostic efficiency and lack of well-trained diagnostic experts. Deep learning of electroencephalogram (EEG) signals recorded from ADHD patients could provide an objective and accurate method to assist physicians in clinical diagnosis. Approach . This paper proposes the EEG-Transformer deep learning model, which is based on the attention mechanism in the traditional Transformer model, and can perform feature extraction and signal classification processing for the characteristics of EEG signals. A comprehensive comparison was made between the proposed transformer model and three existing convolutional neural network models. Main results . The results showed that the proposed EEG-Transformer model achieved an average accuracy of 95.85% and an average AUC value of 0.9926 with the fastest convergence speed, outperforming the other three models. The function and relationship of each module of the model are studied by ablation experiments. The model with optimal performance was identified by the optimization experiment. Significance . The EEG-Transformer model proposed in this paper can be used as an auxiliary tool for clinical diagnosis of ADHD, and at the same time provides a basic model for transferable learning in the field of EEG signal classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
受伤雨南发布了新的文献求助30
1秒前
2秒前
lucy发布了新的文献求助10
2秒前
meng发布了新的文献求助10
3秒前
忧虑的靖巧完成签到 ,获得积分10
4秒前
4秒前
汉堡包应助zhouleiwang采纳,获得10
5秒前
5秒前
研友_LMgz0Z发布了新的文献求助10
7秒前
Augustines完成签到,获得积分10
7秒前
9秒前
受伤雨南完成签到,获得积分10
10秒前
CodeCraft应助HL采纳,获得10
10秒前
科研通AI5应助Rico采纳,获得10
10秒前
SWEETYXY发布了新的文献求助10
10秒前
ABB发布了新的文献求助10
11秒前
qw1完成签到,获得积分10
12秒前
刀锋给刀锋的求助进行了留言
15秒前
kassia完成签到,获得积分10
17秒前
科研通AI5应助dsdjsicj采纳,获得10
17秒前
17秒前
体谅WXF完成签到,获得积分10
18秒前
山语完成签到,获得积分20
18秒前
19秒前
zhouleiwang发布了新的文献求助10
19秒前
20秒前
wr0112发布了新的文献求助80
20秒前
皮皮发布了新的文献求助10
21秒前
jonghuang发布了新的文献求助10
23秒前
sxp1031发布了新的文献求助10
23秒前
27秒前
27秒前
子凡应助温暖霸采纳,获得10
27秒前
28秒前
深情安青应助HL采纳,获得10
28秒前
wxt完成签到 ,获得积分10
28秒前
皮皮发布了新的文献求助10
32秒前
香蕉觅云应助cs采纳,获得10
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385