Classification of attention deficit/hyperactivity disorder based on EEG signals using a EEG-Transformer model ∗

脑电图 计算机科学 变压器 人工智能 卷积神经网络 注意缺陷多动障碍 机器学习 模式识别(心理学) 心理学 工程类 神经科学 精神科 电压 电气工程
作者
Yuchao He,Xin Wang,Zijian Győző Yang,Lingbin Xue,Yuming Chen,Junyu Ji,Feng Wan,Subhas Chandra Mukhopadhyay,Lina Men,Michael C. F. Tong,Guanglin Li,Shixiong Chen
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056013-056013 被引量:9
标识
DOI:10.1088/1741-2552/acf7f5
摘要

Abstract Objective . Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in adolescents that can seriously impair a person’s attention function, cognitive processes, and learning ability. Currently, clinicians primarily diagnose patients based on the subjective assessments of the Diagnostic and Statistical Manual of Mental Disorders-5, which can lead to delayed diagnosis of ADHD and even misdiagnosis due to low diagnostic efficiency and lack of well-trained diagnostic experts. Deep learning of electroencephalogram (EEG) signals recorded from ADHD patients could provide an objective and accurate method to assist physicians in clinical diagnosis. Approach . This paper proposes the EEG-Transformer deep learning model, which is based on the attention mechanism in the traditional Transformer model, and can perform feature extraction and signal classification processing for the characteristics of EEG signals. A comprehensive comparison was made between the proposed transformer model and three existing convolutional neural network models. Main results . The results showed that the proposed EEG-Transformer model achieved an average accuracy of 95.85% and an average AUC value of 0.9926 with the fastest convergence speed, outperforming the other three models. The function and relationship of each module of the model are studied by ablation experiments. The model with optimal performance was identified by the optimization experiment. Significance . The EEG-Transformer model proposed in this paper can be used as an auxiliary tool for clinical diagnosis of ADHD, and at the same time provides a basic model for transferable learning in the field of EEG signal classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张道恒完成签到,获得积分10
刚刚
小徐爱絮叨完成签到,获得积分20
1秒前
64658应助是小曹啊采纳,获得10
1秒前
文艺千柳应助Mine采纳,获得10
1秒前
栗子完成签到 ,获得积分10
1秒前
韩霖发布了新的文献求助10
2秒前
Y1311应助sun采纳,获得50
3秒前
深情安青应助苗条的龙哥采纳,获得10
3秒前
3秒前
3秒前
shm123321完成签到,获得积分10
3秒前
Lucas应助Lq采纳,获得10
4秒前
蔡蔡不菜菜完成签到,获得积分10
4秒前
hu发布了新的文献求助50
5秒前
jiying131发布了新的文献求助10
5秒前
浮游应助jrzsy采纳,获得10
5秒前
6秒前
tufuczy完成签到,获得积分10
6秒前
宏韬完成签到 ,获得积分10
6秒前
calm完成签到,获得积分10
6秒前
Joy完成签到,获得积分10
7秒前
孟博涵完成签到,获得积分10
7秒前
Sera发布了新的文献求助10
7秒前
小二郎应助kekeli采纳,获得10
7秒前
8秒前
8秒前
务实青亦完成签到,获得积分20
8秒前
Ava应助烂漫的从彤采纳,获得10
8秒前
9秒前
9秒前
礼岁岁发布了新的文献求助10
9秒前
小高完成签到,获得积分10
10秒前
山月发布了新的文献求助10
11秒前
务实青亦发布了新的文献求助10
12秒前
大橘为重完成签到 ,获得积分10
12秒前
13秒前
baobingzhiwu发布了新的文献求助10
13秒前
aa发布了新的文献求助10
13秒前
Hx完成签到 ,获得积分10
13秒前
莫溪月发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
Higher taxa of Basidiomycetes 300
Ricci Solitons in Dimensions 4 and Higher 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4688750
求助须知:如何正确求助?哪些是违规求助? 4061435
关于积分的说明 12557156
捐赠科研通 3758855
什么是DOI,文献DOI怎么找? 2075942
邀请新用户注册赠送积分活动 1104622
科研通“疑难数据库(出版商)”最低求助积分说明 983700