DGNet: An Adaptive Lightweight Defect Detection Model for New Energy Vehicle Battery Current Collector

计算机科学 电池(电) 冗余(工程) 交叉口(航空) 数据冗余 工程类 数据库 操作系统 功率(物理) 物理 量子力学 航空航天工程
作者
Lei Yuan,Yanrong Chen,Hai Tang,Ren Gao,Wenhuan Wu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (23): 29815-29830 被引量:71
标识
DOI:10.1109/jsen.2023.3324441
摘要

As an essential component of the new energy vehicle battery, current collectors affect the performance of battery and are crucial to the safety of passengers. The significant differences in shape and scale among defect types make it challenging for the model detection of current collector defects. In order to reduce application costs and conduct real-time detection with limited computing resources, we propose an end-to-end adaptive and lightweight defect detection model for the battery current collector (BCC), DGNet. First, we designed an adaptive lightweight backbone network (DOConv and Shufflenet V2 (DOS) module) to adaptively extract useful features adaptively along all four dimensions of kernel space while maintaining low-computational complexity. Second, we designed a lightweight feature fusion network [GSConv and FPN (GS_FPN)], which reduces parameter redundancy and fully utilizes the semantic information of the feature maps of backbone network while ensuring detection accuracy. Experimental results show that DGNet achieves a mean average precision at intersection over union (IoU) threshold 0.5 ( $\text {mAP}_{{50}}$ ) of 91.8% on the self-made BCC surface defect database, with a model size of 4.0M, only 3.7 giga floating-point operations per second (GFLOPs), and frames/s (FPS) of 181.8. To further demonstrate the capabilities of DGNet, we test it on the publicly Northeastern University (NEU) surface defect database, and the results showed that the DGNet exhibited good generalization. Compared with current advanced lightweight network models, it achieves higher detection accuracy and lower computational overhead, reaching the state-of-the-art (SOTA) level. Finally, we deployed DGNet on the embedded platform NVIDIA Jetson Nano for real-time detection, achieving a detection time of 0.074 s per image, meeting the accuracy and real-time detection requirements for BCC defect detection tasks in practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助维生素采纳,获得10
刚刚
dd完成签到,获得积分10
刚刚
刚刚
金木木发布了新的文献求助10
2秒前
知韵墨客完成签到 ,获得积分10
2秒前
12233发布了新的文献求助10
2秒前
赘婿应助小钟采纳,获得30
3秒前
道阻且长发布了新的文献求助10
3秒前
ding应助失眠的凡阳采纳,获得10
4秒前
ekswai发布了新的文献求助10
4秒前
木火完成签到,获得积分10
5秒前
acutelily发布了新的文献求助20
5秒前
奥丁蒂法完成签到,获得积分10
5秒前
马上毕业完成签到,获得积分10
6秒前
哦吼发布了新的文献求助10
6秒前
一亩蔬菜完成签到,获得积分10
9秒前
李娇完成签到 ,获得积分10
12秒前
努力考研完成签到,获得积分10
13秒前
colddie完成签到,获得积分10
13秒前
14秒前
Lain完成签到,获得积分10
15秒前
guoza发布了新的文献求助10
15秒前
风华正茂完成签到,获得积分10
16秒前
SYLH给悲凉的小懒虫的求助进行了留言
16秒前
昏睡的傻姑完成签到,获得积分10
19秒前
在水一方应助薛变霞采纳,获得10
19秒前
科研通AI5应助善良雅柏采纳,获得10
19秒前
嘿嘿完成签到 ,获得积分20
20秒前
juliar完成签到 ,获得积分10
22秒前
快乐的如风完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
cyj完成签到,获得积分10
26秒前
薛变霞发布了新的文献求助10
31秒前
钟爱发布了新的文献求助10
32秒前
LLLLLLLj完成签到,获得积分10
32秒前
薄荷蓝完成签到,获得积分10
32秒前
34秒前
薛变霞完成签到,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808987
求助须知:如何正确求助?哪些是违规求助? 3353695
关于积分的说明 10366556
捐赠科研通 3069920
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320