DCapsNet: Deep capsule network for human activity and gait recognition with smartphone sensors

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 特征提取 步态 方向(向量空间) 深度学习 人工神经网络 计算机视觉 数学 几何学 生理学 生物
作者
Ahmadreza Sezavar,Randa Atta,M. Ghanbari
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:147: 110054-110054 被引量:18
标识
DOI:10.1016/j.patcog.2023.110054
摘要

Recently, deep neural networks are used to recognize human activity/gait through mobile sensors which have attracted a great attention. Although the existing deep neural networks that perform automatic feature extraction have achieved desirable performance, their classification accuracy needs to be improved. In this paper, a deep neural network that combines a set of convolutional layers and capsule network is proposed. The proposed architecture named DCapsNet is suited to automatically extract the activity or gait features through built in sensors and classify them. The convolutional layers of the DCapsNet are more suitable for processing temporal sequences and provide scalar outputs but not the equivariance. The capsule network (CapsNet) is then trained by a dynamic routing algorithm to capture the equivariance having a magnitude and orientation, which increases the efficiency of the model classification. The performance of the proposed model is evaluated on four public datasets: two HAR datasets (UCI-HAR and WISDM) and two gait datasets (WhuGAIT). The recognition accuracy of the proposed model for the UCI-HAR and WISDM datasets are 97.92 % and 99.30 %, respectively, and for the WhuGAIT Dataset #1 and Dataset #2 are 94.75 % and 97.16 %, respectively. Experimental results show that the proposed model achieves the highest recognition accuracy over the reported results of the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiixix发布了新的文献求助10
1秒前
默默完成签到,获得积分10
2秒前
无私一德发布了新的文献求助20
2秒前
3秒前
陈俊威完成签到,获得积分10
3秒前
yxli完成签到,获得积分10
5秒前
。。完成签到,获得积分10
5秒前
打打应助友好凌柏采纳,获得10
6秒前
自觉半凡完成签到,获得积分10
7秒前
Orange应助汪洋中的破船采纳,获得30
8秒前
9秒前
自觉半凡发布了新的文献求助10
9秒前
852应助makimaki采纳,获得10
10秒前
悟格发布了新的文献求助10
10秒前
兵马俑完成签到,获得积分20
10秒前
12秒前
15秒前
彭于晏应助可取采纳,获得10
15秒前
15秒前
DownTAT完成签到,获得积分10
16秒前
一一发布了新的文献求助20
16秒前
DownTAT发布了新的文献求助10
19秒前
20秒前
21秒前
hrzmlily完成签到,获得积分10
22秒前
22秒前
22秒前
丰丰发布了新的文献求助20
22秒前
xuan完成签到,获得积分20
22秒前
SYLH应助勤劳怜寒采纳,获得10
22秒前
23秒前
在水一方应助doctorbba采纳,获得10
23秒前
MM应助Yuna采纳,获得10
24秒前
24秒前
李天完成签到 ,获得积分20
24秒前
wu完成签到,获得积分10
25秒前
25秒前
26秒前
可取发布了新的文献求助10
26秒前
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797784
求助须知:如何正确求助?哪些是违规求助? 3343264
关于积分的说明 10315131
捐赠科研通 3060016
什么是DOI,文献DOI怎么找? 1679212
邀请新用户注册赠送积分活动 806436
科研通“疑难数据库(出版商)”最低求助积分说明 763150