In situ TEM observations and molecular dynamics simulations of deformation defect activities in Mg via nanoindentation

纳米压痕 晶体孪晶 材料科学 缩进 成核 位错 部分位错 打滑(空气动力学) 分子动力学 结晶学 位错蠕变 叠加断层 复合材料 变形(气象学) 原位 微观结构 热力学 物理 计算化学 化学 气象学
作者
Yicheng Lai,Yubin Ying,Digvijay Yadav,Jose Guerrero,Yong‐Jie Hu,Kelvin Y. Xie
出处
期刊:Journal of Magnesium and Alloys [Elsevier BV]
卷期号:11 (12): 4513-4524 被引量:9
标识
DOI:10.1016/j.jma.2023.08.013
摘要

In this work, we performed in situ nanoindentation in TEM to capture the real-time 〈c + a〉 dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of 〈c + a〉 dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both 〈c + a〉 dislocation retraction and detwinning. Moreover, we note that the plastic zone comprised of 〈c + a〉 dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that, in addition to 〈a〉 dislocations, the I1 stacking fault bounded with a 〈1/2c+p〉 Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant 〈c + a〉 dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of 〈c + a〉 dislocation slip and twinning in Mg and alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王妍发布了新的文献求助10
刚刚
可爱山彤完成签到,获得积分10
1秒前
少年游完成签到,获得积分20
1秒前
1秒前
充电宝应助老年采纳,获得10
2秒前
Liquor发布了新的文献求助10
2秒前
Yanwenjun发布了新的文献求助10
3秒前
ZJ完成签到,获得积分20
3秒前
4秒前
LIAN发布了新的文献求助10
4秒前
4秒前
小蘑菇应助鹿友绿采纳,获得10
5秒前
ZJ发布了新的文献求助10
6秒前
科研通AI5应助夜夜采纳,获得10
6秒前
哇哈哈完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
顾矜应助彬墩墩采纳,获得20
10秒前
盐先生完成签到 ,获得积分10
11秒前
xrl完成签到,获得积分10
11秒前
走遍千里发布了新的文献求助10
11秒前
Martina完成签到,获得积分10
11秒前
LIAN完成签到,获得积分10
12秒前
12秒前
蜀韵月凉完成签到,获得积分10
12秒前
科研通AI6应助烂漫绿海采纳,获得10
13秒前
赘婿应助我要发sci采纳,获得10
13秒前
称心夏兰发布了新的文献求助10
14秒前
无极微光应助走遍千里采纳,获得20
15秒前
15秒前
务实慕山完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
没有昵称完成签到,获得积分10
17秒前
co发布了新的文献求助10
17秒前
Orange应助小橙同学采纳,获得10
17秒前
Jasper应助小月采纳,获得10
19秒前
20秒前
cc发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703717
求助须知:如何正确求助?哪些是违规求助? 4071055
关于积分的说明 12588289
捐赠科研通 3771527
什么是DOI,文献DOI怎么找? 2083203
邀请新用户注册赠送积分活动 1110446
科研通“疑难数据库(出版商)”最低求助积分说明 988335