General Synthesis of Composition-Tunable High-Entropy Amorphous Oxides Toward High Efficiency Oxygen Evolution Reaction

无定形固体 氧气 作文(语言) 高熵合金 化学工程 析氧 材料科学 化学 物理化学 冶金 结晶学 工程类 有机化学 微观结构 哲学 语言学 电极 电化学
作者
Shunda Jiang,Yihang Yu,Huan He,Zhiyuan Wang,Runguo Zheng,Hongyu Sun,Yanguo Liu,Dan Wang
标识
DOI:10.2139/ssrn.4604171
摘要

High-entropy materials have attracted much attention due to their unique structure, chemical complexity and compositional tunability, which can achieve catalytic performance beyond that of single-component materials. However, the harsh and complex synthetic methods limit the application of such materials. Here, a universal non-equilibrium liquid-phase synthesis strategy is reported to prepare high-entropy amorphous oxide nanoparticles (HEAO-NPs), and the composition of the synthesized samples can be precisely controlled from tri- to ten-component. The non-equilibrium synthesis environment provided by an excessive strong reducing agent in the reaction system overcomes the difference in the reduction potentials of various metal ions, resulting in the formation of high-entropy amorphous oxide nanoparticles with nearly equimolar ratio. By adjusting the content of iron in Fex(Co1/2Ni1/2)80-xMn10Cu10BOx, the OER performance is further improved by optimization of the electronic structure. Compared with commercial RuO2, the Fe16Co32Ni32Mn10Cu10BOx exhibits smaller overpotential (only 259 mV at 10 mA cm-2) and higher stability (55 h i-t test and 31000 CV cycles) in OER. The excellent OER performance is attributed to the following factors: the amorphous nanostructure with a rough surface favors the OER process; the low iron content makes the binding energy of CoNi shifts to a higher direction, which promotes the generation of high-valence active intermediates and accelerates the kinetic process. The HEAO-NPs obtained in this work have promising application potential in the field of catalysis, biology, and energy storage, and it provides a general synthesis method for the composition-controllable high-entropy materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
9秒前
笑笑完成签到,获得积分20
10秒前
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得30
11秒前
所所应助科研通管家采纳,获得30
11秒前
Akim应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
勿明应助科研通管家采纳,获得30
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
科研应助科研通管家采纳,获得10
12秒前
坚定碧完成签到 ,获得积分10
13秒前
积木123完成签到,获得积分10
14秒前
成成完成签到,获得积分0
15秒前
欣慰的天荷完成签到 ,获得积分10
16秒前
脑洞疼应助科研小破白菜采纳,获得10
17秒前
六尺巷发布了新的文献求助10
21秒前
22秒前
24秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
27秒前
晓宇发布了新的文献求助10
28秒前
yeluoyezhi完成签到,获得积分10
32秒前
Owen应助箱子采纳,获得10
37秒前
39秒前
深情安青应助aura采纳,获得10
49秒前
UUUUUp完成签到,获得积分10
51秒前
CipherSage应助jason采纳,获得10
58秒前
小正完成签到,获得积分10
1分钟前
归尘应助豆豆采纳,获得10
1分钟前
土豆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385