CT-Guided, Unsupervised Super-Resolution Reconstruction of Single 3D Magnetic Resonance Image

人工智能 计算机科学 模式识别(心理学) 相似性(几何) 峰值信噪比 图像质量 计算机视觉 磁共振成像 迭代重建 图像分辨率 图像(数学) 超分辨率 医学 放射科
作者
Jiale Wang,Alexander F. Heimann,Moritz Tannast,Guoyan Zheng
出处
期刊:Lecture Notes in Computer Science 卷期号:: 497-507 被引量:1
标识
DOI:10.1007/978-3-031-43907-0_48
摘要

Deep learning-based algorithms for single MR image (MRI) super-resolution have shown great potential in enhancing the resolution of low-quality images. However, many of these methods rely on supervised training with paired low-resolution (LR) and high-resolution (HR) MR images, which can be difficult to obtain in clinical settings. This is because acquiring HR MR images in clinical settings requires a significant amount of time. In contrast, HR CT images are acquired in clinical routine. In this paper, we propose a CT-guided, unsupervised MRI super-resolution reconstruction method based on joint cross-modality image translation and super-resolution reconstruction, eliminating the requirement of high-resolution MRI for training. The proposed approach is validated on two datasets respectively acquired from two different clinical sites. Well-established metrics including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Metrics (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) are used to assess the performance of the proposed method. Our method achieved an average PSNR of 32.23, an average SSIM of 0.90 and an average LPIPS of 0.14 when evaluated on data of the first site. An average PSNR of 30.58, an average SSIM of 0.88, and an average LPIPS of 0.10 were achieved by our method when evaluated on data of the second site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小超超应助popo6150采纳,获得10
1秒前
陨yue发布了新的文献求助10
1秒前
季风气候完成签到 ,获得积分10
1秒前
zz驳回了一一应助
1秒前
科研助手6应助虚幻白桃采纳,获得10
1秒前
2秒前
2秒前
Mado完成签到,获得积分10
3秒前
星辰大海应助杨大大采纳,获得10
3秒前
单薄电话发布了新的文献求助10
5秒前
li8097完成签到,获得积分10
5秒前
6秒前
6秒前
Akun发布了新的文献求助10
7秒前
搜集达人应助Tethys采纳,获得10
7秒前
lily完成签到,获得积分10
7秒前
汉堡包应助zzx采纳,获得10
7秒前
心向阳光发布了新的文献求助20
8秒前
zlx完成签到 ,获得积分10
8秒前
9秒前
9秒前
FashionBoy应助面朝大海采纳,获得10
9秒前
9秒前
冷傲迎梦发布了新的文献求助10
9秒前
9秒前
三只羊驼完成签到,获得积分10
11秒前
辣姜完成签到,获得积分10
11秒前
受伤问凝完成签到 ,获得积分10
12秒前
Orange应助热心的皮采纳,获得10
12秒前
13秒前
13秒前
白白发布了新的文献求助10
13秒前
13秒前
李健的小迷弟应助Akun采纳,获得10
13秒前
14秒前
机智灵薇完成签到,获得积分10
15秒前
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
上官若男应助yuyu采纳,获得50
15秒前
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093