A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model

排名(信息检索) 计算机科学 人工神经网络 数据包络分析 效率 点(几何) 生产力 计量经济学 数学优化 人工智能 统计 数学 经济 几何学 估计员 宏观经济学
作者
Zhifeng Shen,Ning Liu,Xialing Li,Zhengguang Kang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-11 被引量:5
标识
DOI:10.1155/2022/9521107
摘要

In this study, we use BP neural network to improve the DEA model to conduct in-depth research and analysis on the method of green economic efficiency evaluation of resource-based cities. The traditional DEA cannot make ranking and analysis of effective units, which affects the accuracy of empirical analysis. Accordingly, the BP-DEA model is introduced to further conduct a comparative eco-efficiency analysis of relatively effective provinces. In this study, the optimal inputs and outputs are calculated by DEA, and further, the BP neural network is used to fit the functional relationship between the optimal inputs and outputs, and by adding variables, the trained neural network can be used for the prediction of the optimal outputs. In this study, the BP-DEA model is used to empirically investigate the temporal evolution trend, spatial differences, and efficiency differences in eco-efficiency. Meanwhile, breaking through the limitation that DEA can only calculate regional efficiency values, this study combines the Malmquist index to compare and decompose the eco-efficiency of different provinces to analyze the sources of total factor productivity changes. The results show that the method can clarify the gap between the actual operation of each indicator and the reference point; it can identify how much room for improvement still needs to be made for each indicator, and it can also determine whether each city should be rewarded or penalized and its specific amount. Finally, based on the evaluation of eco-efficiency and the main constraints, corresponding policy recommendations are proposed. Finally, based on the evaluation results of the BP-DEA method, this study analyzes the overall efficiency improvement of cities in the two study areas in three dimensions: urbanization construction, ecology, and economic development put forward seven types of urban efficiency improvement and propose targeted urban development suggestions according to regional characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张振宇完成签到 ,获得积分10
1秒前
1秒前
zhou完成签到,获得积分10
3秒前
任性凤凰完成签到,获得积分20
4秒前
倪倪完成签到,获得积分10
6秒前
qs发布了新的文献求助10
6秒前
我是老大应助首席或雪月采纳,获得10
7秒前
Atom完成签到,获得积分10
8秒前
彬子完成签到,获得积分10
8秒前
在水一方应助changnan采纳,获得10
9秒前
11秒前
adam完成签到,获得积分10
11秒前
mc发布了新的文献求助10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
qiao应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助任性凤凰采纳,获得10
13秒前
大咖发布了新的文献求助10
15秒前
潘辉完成签到,获得积分10
16秒前
科研通AI5应助三幅画采纳,获得10
17秒前
科研通AI5应助三幅画采纳,获得10
17秒前
匀速前行发布了新的文献求助10
17秒前
夏小安完成签到,获得积分10
18秒前
18秒前
马哥二弟无敌完成签到 ,获得积分10
20秒前
21秒前
22秒前
liu关闭了liu文献求助
23秒前
24秒前
qs完成签到,获得积分20
24秒前
李爱国应助poki采纳,获得10
25秒前
隐形曼青应助匀速前行采纳,获得10
26秒前
changnan发布了新的文献求助10
26秒前
北海qy完成签到,获得积分10
26秒前
yarkye完成签到,获得积分10
26秒前
mc关闭了mc文献求助
27秒前
歇儿哒哒完成签到,获得积分10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979