关系(数据库)
化学
生物物理学
生物
计算机科学
数据挖掘
作者
Jan M. Suski,Magdalena Lebiedzińska,Massimo Bonora,Paolo Pinton,Jerzy Duszyński,Mariusz R. Więckowski
标识
DOI:10.1007/978-1-61779-382-0_12
摘要
Mitochondria are considered as the main source of reactive oxygen species (ROS) in the cell. For this reason, they have been recognized as a source of various pathological conditions as well as aging. Chronic increase in the rate of ROS production is responsible for the accumulation of ROS-associated damages in DNA, proteins, and lipids, and may result in progressive cell dysfunctions and, in a consequence, apoptosis, increasing the overall probability of an organism's pathological conditions. The superoxide anion is the main undesired by-product of mitochondrial oxidative phosphorylation. Its production is triggered by a leak of electrons from the mitochondrial respiratory chain and the reaction of these electrons with O(2). Superoxide dismutase (MnSOD, SOD2) from the mitochondrial matrix as well as superoxide dismutase (Cu/ZnSOD, SOD1) present in small amounts in the mitochondrial intramembrane space, convert superoxide anion to hydrogen peroxide, which can be then converted by catalase to harmless H(2)O. In this chapter, we describe a relation between mitochondrial membrane potential and the rate of ROS formation. We present different methods applicable for isolated mitochondria or intact cells. We also present experiments demonstrating that a magnitude and a direction (increase or decrease) of a change in mitochondrial ROS production depends on the metabolic state of this organelle.
科研通智能强力驱动
Strongly Powered by AbleSci AI