计算机科学
突触后电位
反向传播
阈值
学习规律
人工智能
尖峰神经网络
编码(社会科学)
不连续性分类
预测编码
人工神经网络
算法
模式识别(心理学)
数学
统计
图像(数学)
数学分析
生物化学
受体
化学
作者
Sander M. Bohté,Joost N. Kok,J. A. La Poutré
出处
期刊:The European Symposium on Artificial Neural Networks
日期:2000-01-01
卷期号:: 419-424
被引量:135
摘要
For a network of spiking neurons with reasonable postsynaptic potentials, we derive a supervised learning rule akin to traditional error-back-propagation, SpikeProp and show how to overcome the discontinuities introduced by thresholding. Using this learning algorithm, we demonstrate how networks of spiking neurons with biologically plausible time-constants can perform complex non-linear classi cation in fast temporal coding just as well as rate-coded networks. When comparing the (implicit) number of neurons required for the respective encodings, it is empirically demonstrated that temporal coding potentially requires signi cantly less neurons.
科研通智能强力驱动
Strongly Powered by AbleSci AI