乙型肝炎病毒
肝星状细胞
分子生物学
病毒学
细胞培养
化学
乙型肝炎
细胞生长
生物
病毒
生物化学
遗传学
内分泌学
作者
Xuan Liu,Sheng-Tao Zhu,Hong You,Min Cong,Tianhui Liu,Bao-en Wang,Jidong Jia
出处
期刊:PubMed
日期:2009-06-20
卷期号:122 (12): 1455-61
被引量:22
摘要
Hepatitis B is at particularly high risk of fibrosis progression. Unfortunately, the mechanism of hepatic fibrogenesis induced by hepatitis B virus (HBV) has not been fully understood to date. The aim of this study was to observe whether HBV can infect hepatic stellate cells (HSCs), and to examine the effects of HBV or HBV S protein (HBs) on the proliferation and collagen type I expression of HSCs.The supernatants of HepG2.2.15 cells which contained HBV-DNA or HBs were added to LX-2 cells for 72 hours. Cell survival was determined by MTT assay. HBV particles in LX-2 cells were detected by transmission electron microscopy. The expression of HBs and HBV C protein (HBc) was determined by confocal fluorescence microscopy. The expression levels of HBV-DNA were measured by real-time PCR. The cellular collagen type I mRNA and protein levels were quantified by reverse transcription-PCR and ELISA, respectively.High concentrations of HBV (1.2 x 10(5) - 5.0 x 10(5) copies/ml) or HBs (1.25 - 20 microg/ml) inhibited the proliferation of LX-2 cells, while low concentrations of HBV (1.0 x 10(3) - 6.2 x 10(4) copies/ml) or HBs (0.04 - 0.62 microg/ml) promoted the proliferation. After treating LX-2 cells with HBV for 72 hours, about 42 nm HBV-sized particles and strong expression of HBs and HBc were found in the cytoplasm of LX-2 cells. HBV-DNA in the culture medium of LX-2 cells decreased at 24 hours, rose at 48 hours and thereafter, decreased again at 72 hours. The mRNA and protein expression of cellular collagen type I in LX-2 cells were significantly increased by HBV infection but not by recombinant HBs.HBV and HBs affect the proliferation of HSCs; HBV can transiently infect and replicate in cultured HSCs and express HBs and HBc in vitro. Furthermore, HBV can significantly increase the expression of collagen type I mRNA and protein in HSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI