Calcium/calmodulin-dependent protein kinase II in human articular chondrocytes

机械转化 细胞生物学 阿格里坎 软骨细胞 刺激 化学 去极化 神经科学 生物 软骨 内分泌学 解剖 骨关节炎 医学 替代医学 病理 关节软骨
作者
Ayaka Shimazaki,M. O. Wright,Kerry Elliot,Donald M. Salter,S.J. Millward‐Sadler
出处
期刊:Biorheology [IOS Press]
卷期号:43 (3-4): 223-233 被引量:32
标识
DOI:10.1177/0006355x2006043003004007
摘要

Mechanical stimuli are known to have major influences on chondrocyte function. The molecular events that regulate chondrocyte responses to mechanical stimulation have been the subject of much study. Using an in vitro experimental system we have identified mechanotransduction pathways that control molecular and biochemical responses of human articular chondrocytes to cyclical mechanical stimulation, and how these responses differ in cells isolated from diseased cartilage. We have previously shown that mechanical stimulation of normal articular chondrocytes leads to a cell membrane hyperpolarisation. Within 1 hour following mechanical stimulation there is an increase in aggrecan mRNA levels. These responses are mediated via alpha5beta1 integrins, the neuropeptides substance P and NMDA, and the cytokine interleukin-4. In OA chondrocytes mechanical stimulation leads to cell membrane depolarisation, but no change in aggrecan mRNA at 1 hour. The depolarisation response is mediated via alpha5beta1 integrins, substance P and interleukin-4, but the cells show an altered response to NMDA. Having identified that the NMDA receptor is present in human articular cartilage and may play an important role in a chondroprotective mechanotransduction pathway, we were interested in whether other components associated with NMDA signalling may be involved in the chondrocyte mechanotransduction pathways. One such component is calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII mediates many cellular responses to elevated Ca2+ in a wide variety of cells and tissues. It is involved in the regulation of ion channels, cytoskeletal dynamics, gene transcription, neurotransmitter synthesis, insulin secretion, and cell division. CaMKII also shows a broad substrate specificity and is abundant in brain tissue, indicating that this kinase may play a number of roles in the functioning of the central nervous system. This kinase has been studied extensively in brain, but there is only a limited understanding of CaMKII in other tissues. CAMKII has four subunit isoforms (alpha,beta,gamma,delta). The alpha- and beta-isoforms have narrow distributions restricted mainly to neuronal tissues, but the gamma- and delta-isoforms are ubiquitously expressed within neuronal and non-neuronal tissues. The aim of this study was to investigate the expression of CaMKII in normal and OA cartilage and chondrocytes, and whether this enzyme is involved in the response of chondrocytes to cyclical mechanical stimuli. Reverse transcriptase-polymerase chain reaction (RT-PCR), using primers specific for the different CaMKII isoforms, was carried out to assess which isoforms are expressed in human articular chondrocytes. To assess whether CaMKII is expressed in human articular chondrocytes at the protein level, cultured chondrocytes were extracted and analysed by Western blotting using a pan-CaMKII antibody. Immunohistochemistry was carried out to investigate whether CaMKII is expressed by human articular chondrocytes in vivo. Frozen sections of normal, OA and ankle cartilage were incubated for one hour with CaMKII antibody and visualised using ABC and DAB. To assess the role of CaMKII in the mechanotransduction responses of normal and OA chondrocytes, human normal and OA articular chondrocytes were mechanically stimulated at 0.33 Hz, or by addition of recombinant IL-4 for 20 minutes. Cell responses to these stimuli, in the absence or presence of an inhibitor of CaMKII were assessed by measuring changes in cell membrane potential or changes in relative levels of aggrecan mRNA compared with the housekeeping gene GAPDH. Normal, OA, and ankle chondrocytes expressed the gamma and delta isoforms of CaMKII mRNA, but not the alpha and beta isoforms as demonstrated by RT-PCR. Western blotting showed a band at approximately 60 kDa consistent with the expression of CaMKII. Immunohistochemistry revealed the positive staining in the middle and deep zones, but not the superficial zone, of normal, OA, and ankle cartilage. The presence of a CaMKII inhibitor inhibits the membrane hyperpolarisation response and upregulation of aggrecan mRNA in normal chondrocytes following mechanical stimulation, but has no effect on the hyperpolarisation response to recombinant IL4. The depolarisation response of OA chondrocytes to mechanical stimulation is unaffected by the presence of the CaMKII inhibitor. The CaMKII isoforms gamma and delta are expressed in both normal and OA chondrocytes, both in vitro and in vivo, but are only involved in the response of normal chondrocytes to mechanical stimulation. This response is upstream of the effect of IL4. These findings are consistent with previous findings for the NMDA receptor, and suggest that dysregulation of NMDA-CaMKII signalling may be important in onset and progression of osteoarthritis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
Yc完成签到 ,获得积分10
3秒前
3秒前
6秒前
annabel完成签到 ,获得积分10
7秒前
齐齐发布了新的文献求助10
8秒前
丹丹发布了新的文献求助10
8秒前
赵坤煊完成签到 ,获得积分0
11秒前
帅小伙hh发布了新的文献求助20
11秒前
11秒前
大泥鳅发布了新的文献求助10
11秒前
12秒前
Jenny发布了新的文献求助20
15秒前
srrrr完成签到,获得积分10
15秒前
19秒前
20秒前
21秒前
丹丹完成签到,获得积分20
21秒前
monan发布了新的文献求助10
24秒前
rye驳回了827584450应助
25秒前
DW发布了新的文献求助10
25秒前
NewMoona完成签到 ,获得积分10
28秒前
眼睛大智宸完成签到,获得积分10
29秒前
30秒前
31秒前
31秒前
lq完成签到 ,获得积分10
33秒前
Distance发布了新的文献求助10
34秒前
厚朴大师发布了新的文献求助30
34秒前
YZJing完成签到,获得积分10
34秒前
36秒前
2897402853完成签到,获得积分10
37秒前
37秒前
niceweiwei完成签到,获得积分20
38秒前
39秒前
帅小伙hh完成签到,获得积分10
39秒前
厚朴大师完成签到,获得积分10
40秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327417
关于积分的说明 10231012
捐赠科研通 3042288
什么是DOI,文献DOI怎么找? 1669966
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804