已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sulfur compound cleanup: molecular sieves for removing H/sub 2/S from natural gas

分子筛 化学 催化作用 硫黄 吸附 天然气 无机化学 有机化学
作者
M. R. Cines,D.M. Haskell,C.G. Houser
出处
期刊:Chem. Eng. Prog.; (United States) 卷期号:113: 103621-103621
标识
DOI:10.1016/j.jbi.2020.103621
摘要

The use of machine learning to guide clinical decision making has the potential to worsen existing health disparities. Several recent works frame the problem as that of algorithmic fairness, a framework that has attracted considerable attention and criticism. However, the appropriateness of this framework is unclear due to both ethical as well as technical considerations, the latter of which include trade-offs between measures of fairness and model performance that are not well-understood for predictive models of clinical outcomes. To inform the ongoing debate, we conduct an empirical study to characterize the impact of penalizing group fairness violations on an array of measures of model performance and group fairness. We repeat the analysis across multiple observational healthcare databases, clinical outcomes, and sensitive attributes. We find that procedures that penalize differences between the distributions of predictions across groups induce nearly-universal degradation of multiple performance metrics within groups. On examining the secondary impact of these procedures, we observe heterogeneity of the effect of these procedures on measures of fairness in calibration and ranking across experimental conditions. Beyond the reported trade-offs, we emphasize that analyses of algorithmic fairness in healthcare lack the contextual grounding and causal awareness necessary to reason about the mechanisms that lead to health disparities, as well as about the potential of algorithmic fairness methods to counteract those mechanisms. In light of these limitations, we encourage researchers building predictive models for clinical use to step outside the algorithmic fairness frame and engage critically with the broader sociotechnical context surrounding the use of machine learning in healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
2秒前
特特雷珀萨努完成签到 ,获得积分10
3秒前
3秒前
隐形曼青应助慧木采纳,获得10
4秒前
几度雨停发布了新的文献求助30
7秒前
Li发布了新的文献求助10
12秒前
火星仙人掌完成签到,获得积分10
13秒前
14秒前
chenjzhuc完成签到,获得积分10
14秒前
林林完成签到,获得积分10
15秒前
19秒前
阔达宝莹发布了新的文献求助10
20秒前
Li发布了新的文献求助10
22秒前
虚拟的凌旋完成签到 ,获得积分10
25秒前
慕青应助酒颜采纳,获得10
27秒前
热情的寄瑶完成签到 ,获得积分10
29秒前
Li发布了新的文献求助10
34秒前
可爱的函函应助几度雨停采纳,获得20
34秒前
Ava应助几度雨停采纳,获得10
34秒前
35秒前
6666完成签到,获得积分10
37秒前
anders完成签到 ,获得积分10
39秒前
freyaaaaa完成签到,获得积分0
42秒前
Li发布了新的文献求助10
44秒前
44秒前
46秒前
47秒前
he发布了新的文献求助10
49秒前
充电宝应助沉默的钵钵鸡采纳,获得10
50秒前
52秒前
freyaaaaa应助123采纳,获得50
53秒前
LIN发布了新的文献求助10
53秒前
Li发布了新的文献求助10
53秒前
58秒前
华仔应助zl采纳,获得10
58秒前
隐形曼青应助he采纳,获得10
59秒前
So完成签到 ,获得积分10
59秒前
NEM嬛嬛驾到完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515542
求助须知:如何正确求助?哪些是违规求助? 4608975
关于积分的说明 14514171
捐赠科研通 4545426
什么是DOI,文献DOI怎么找? 2490526
邀请新用户注册赠送积分活动 1472489
关于科研通互助平台的介绍 1444181