Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review

计算机科学 人工智能 可穿戴计算机 特征提取 机器学习 深度学习 活动识别 水准点(测量) 可穿戴技术 特征选择 领域(数学) 特征(语言学) 人机交互 嵌入式系统 数学 大地测量学 纯数学 地理 语言学 哲学
作者
E. Ramanujam,Thinagaran Perumal,S. Padmavathi
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (12): 13029-13040 被引量:368
标识
DOI:10.1109/jsen.2021.3069927
摘要

Human Activity Recognition (HAR) is a field that infers human activities from raw time-series signals acquired through embedded sensors of smartphones and wearable devices. It has gained much attraction in various smart home environments, especially to continuously monitor human behaviors in ambient assisted living to provide elderly care and rehabilitation. The system follows various operation modules such as data acquisition, pre-processing to eliminate noise and distortions, feature extraction, feature selection, and classification. Recently, various state-of-the-art techniques have proposed feature extraction and selection techniques classified using traditional Machine learning classifiers. However, most of the techniques use rustic feature extraction processes that are incapable of recognizing complex activities. With the emergence and advancement of high computational resources, Deep Learning techniques are widely used in various HAR systems to retrieve features and classification efficiently. Thus, this review paper focuses on providing profound concise of deep learning techniques used in smartphone and wearable sensor-based recognition systems. The proposed techniques are categorized into conventional and hybrid deep learning models described with its uniqueness, merits, and limitations. The paper also discusses various benchmark datasets used in existing techniques. Finally, the paper lists certain challenges and issues that require future research and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Manzia完成签到,获得积分10
1秒前
duoduoqian发布了新的文献求助10
2秒前
3秒前
快到碗里来完成签到,获得积分10
3秒前
天天快乐应助王赟晖采纳,获得10
3秒前
打打应助王赟晖采纳,获得10
3秒前
华仔应助王赟晖采纳,获得10
4秒前
深情安青应助王赟晖采纳,获得10
4秒前
英俊的铭应助王赟晖采纳,获得10
4秒前
ding应助王赟晖采纳,获得10
4秒前
斯文败类应助王赟晖采纳,获得10
4秒前
Lucas应助xuan采纳,获得10
4秒前
思源应助王赟晖采纳,获得10
4秒前
CodeCraft应助王赟晖采纳,获得10
4秒前
李爱国应助王赟晖采纳,获得10
4秒前
玉铡完成签到,获得积分20
4秒前
2哇哇哇完成签到,获得积分10
5秒前
十七。完成签到,获得积分10
5秒前
xixi完成签到 ,获得积分10
5秒前
6秒前
天冬发布了新的文献求助10
6秒前
8秒前
嘻哈发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
微笑奇迹完成签到,获得积分10
11秒前
13秒前
14秒前
微笑奇迹发布了新的文献求助10
14秒前
务实的冬寒完成签到,获得积分10
15秒前
15秒前
七瑞完成签到,获得积分10
16秒前
16秒前
Gtpangda发布了新的文献求助10
16秒前
喵喵苗关注了科研通微信公众号
17秒前
科研通AI5应助年轻孤风采纳,获得10
17秒前
慕青应助彭于晏采纳,获得10
18秒前
19秒前
SciGPT应助朱瑶君采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170255
求助须知:如何正确求助?哪些是违规求助? 4361071
关于积分的说明 13578323
捐赠科研通 4208230
什么是DOI,文献DOI怎么找? 2308001
邀请新用户注册赠送积分活动 1307435
关于科研通互助平台的介绍 1254240