Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review

计算机科学 人工智能 可穿戴计算机 特征提取 机器学习 深度学习 活动识别 水准点(测量) 可穿戴技术 特征选择 领域(数学) 特征(语言学) 人机交互 嵌入式系统 数学 大地测量学 纯数学 地理 语言学 哲学
作者
E. Ramanujam,Thinagaran Perumal,S. Padmavathi
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (12): 13029-13040 被引量:288
标识
DOI:10.1109/jsen.2021.3069927
摘要

Human Activity Recognition (HAR) is a field that infers human activities from raw time-series signals acquired through embedded sensors of smartphones and wearable devices. It has gained much attraction in various smart home environments, especially to continuously monitor human behaviors in ambient assisted living to provide elderly care and rehabilitation. The system follows various operation modules such as data acquisition, pre-processing to eliminate noise and distortions, feature extraction, feature selection, and classification. Recently, various state-of-the-art techniques have proposed feature extraction and selection techniques classified using traditional Machine learning classifiers. However, most of the techniques use rustic feature extraction processes that are incapable of recognizing complex activities. With the emergence and advancement of high computational resources, Deep Learning techniques are widely used in various HAR systems to retrieve features and classification efficiently. Thus, this review paper focuses on providing profound concise of deep learning techniques used in smartphone and wearable sensor-based recognition systems. The proposed techniques are categorized into conventional and hybrid deep learning models described with its uniqueness, merits, and limitations. The paper also discusses various benchmark datasets used in existing techniques. Finally, the paper lists certain challenges and issues that require future research and improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenwenwang完成签到 ,获得积分10
刚刚
共享精神应助Bin_Liu采纳,获得10
刚刚
2秒前
3秒前
5秒前
45343发布了新的文献求助10
6秒前
shidandan完成签到 ,获得积分10
8秒前
gcl_wzf完成签到 ,获得积分10
13秒前
小白完成签到,获得积分10
16秒前
YJ发布了新的文献求助10
17秒前
17秒前
18秒前
小白发布了新的文献求助10
19秒前
lcw完成签到 ,获得积分10
19秒前
19秒前
田様应助文静外套采纳,获得10
20秒前
东方益发布了新的文献求助10
22秒前
22秒前
研友_n0kYwL发布了新的文献求助10
23秒前
不知道发布了新的文献求助10
24秒前
Willy完成签到,获得积分10
26秒前
斯文败类应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
qiuyang完成签到,获得积分10
27秒前
bebe发布了新的文献求助10
27秒前
盛夏如花发布了新的文献求助10
27秒前
vv发布了新的文献求助10
28秒前
淡然白安发布了新的文献求助30
30秒前
Noel应助wangli采纳,获得10
30秒前
Maqian完成签到,获得积分10
31秒前
CodeCraft应助研友_n0kYwL采纳,获得10
33秒前
冰魂应助盛夏如花采纳,获得10
37秒前
奋斗藏花发布了新的文献求助10
37秒前
善学以致用应助jdjd采纳,获得10
39秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782042
求助须知:如何正确求助?哪些是违规求助? 3327527
关于积分的说明 10231993
捐赠科研通 3042473
什么是DOI,文献DOI怎么找? 1669990
邀请新用户注册赠送积分活动 799539
科研通“疑难数据库(出版商)”最低求助积分说明 758825