Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting

渗透力 反向电渗析 缓压渗透 结垢 生物污染 正渗透 可再生能源 发电 功率密度 海水淡化 材料科学 工艺工程 纳米流体学 反渗透 化学 纳米孔 纳米技术 生化工程 功率(物理) 工程类 电渗析 电气工程 生物化学 物理 量子力学
作者
Xin Tong,Su Liu,John C. Crittenden,Yongsheng Chen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (4): 5838-5860 被引量:90
标识
DOI:10.1021/acsnano.0c09513
摘要

Salinity gradient power (SGP) has been identified as a promising renewable energy source. Reverse electrodialysis (RED) and pressure retarded osmosis (PRO) are two membrane-based technologies for SGP harvesting. Developing nanopores and nanofluidic membranes with excellent water and/or ion transport properties for applications in those two membrane-based technologies is considered viable for improving power generation performance. Despite recent efforts to advance power generation by designing a variety of nanopores and nanofluidic membranes to enhance power density, the valid pathways toward large-scale power generation remain uncertain. In this review, we introduce the features of ion and water transport in nanofluidics that are potentially beneficial to power generation. Subsequently, we survey previous efforts on nanofluidic membrane synthesis to obtain high power density. We also discuss how the various membrane properties influence the power density in RED and PRO before moving on to other important aspects of the technologies, i.e., system energy efficiency and membrane fouling. We analyze the importance of system energy efficiency and illustrate how the delicately designed nanofluidic membranes can potentially enhance energy efficiency. Previous studies are reviewed on fabricating antifouling and antimicrobial membrane for power generation, and opportunities are presented that can lead to the design of nanofluidic membranes with superior antifouling properties using various materials. Finally, future research directions are presented on advancing membrane performance and scaling-up the system. We conclude this review by emphasizing the fact that SGP has the potential to become an important renewable energy source and that high-performance nanofluidic membranes can transform SGP harvesting from conceptual to large-scale applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
宋向荣完成签到 ,获得积分10
10秒前
哭泣忆文发布了新的文献求助10
10秒前
huihongzeng完成签到 ,获得积分10
12秒前
14秒前
上官若男应助小玲仔采纳,获得10
15秒前
乾坤完成签到,获得积分10
17秒前
ou应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
JamesPei应助白衣修身采纳,获得10
19秒前
之所以发布了新的文献求助10
21秒前
22秒前
听海发布了新的文献求助10
25秒前
酸奶冻完成签到,获得积分10
31秒前
cyuan发布了新的文献求助10
40秒前
41秒前
友好听蓉完成签到,获得积分20
41秒前
44秒前
45秒前
47秒前
xuanzi发布了新的文献求助10
50秒前
英俊的铭应助称心怀莲采纳,获得10
51秒前
德古拉富贵完成签到,获得积分10
51秒前
ming应助魏佳阁采纳,获得10
53秒前
友好听蓉发布了新的文献求助10
53秒前
小生完成签到,获得积分10
54秒前
hzau完成签到,获得积分10
57秒前
儒雅龙完成签到 ,获得积分10
58秒前
暴躁的夏蓉完成签到 ,获得积分10
1分钟前
xuanzi完成签到,获得积分20
1分钟前
华仔应助川农美少女采纳,获得10
1分钟前
caiweihong完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
自觉的宇完成签到 ,获得积分10
1分钟前
张张发布了新的文献求助30
1分钟前
傲娇紫烟完成签到,获得积分10
1分钟前
淡然白安发布了新的文献求助10
1分钟前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
De arte gymnastica. The art of gymnastics 600
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2402684
求助须知:如何正确求助?哪些是违规求助? 2101927
关于积分的说明 5301876
捐赠科研通 1829559
什么是DOI,文献DOI怎么找? 911778
版权声明 560393
科研通“疑难数据库(出版商)”最低求助积分说明 487398