氨基酸
赖氨酸
质子化
化学
氨基酸残基
联轴节(管道)
分子动力学
立体化学
肽序列
计算化学
生物化学
离子
材料科学
基因
有机化学
冶金
作者
Timothy A. Coulther,Moritz Pott,Cathleen Zeymer,Donald Hilvert,Mary Jo Ondrechen
摘要
The roles of local interactions in the laboratory evolution of a highly active, computationally designed retroaldolase (RA) are examined. Partial Order Optimum Likelihood (POOL) is used to identify catalytically important amino acid interactions in several RA95 enzyme variants. The series RA95.5, RA95.5-5, RA95.5-8, and RA95.5-8F, representing progress along an evolutionary trajectory with increasing activity, is examined. Computed measures of coupling between charged states of residues show that, as evolution proceeds and higher activities are achieved, electrostatic coupling between the biochemically active amino acids and other residues is increased. In silico residue scanning suggests multiple coupling partners for the catalytic lysine K83. The effects of two predicted partners, Y51 and E85, are tested using site-directed mutagenesis and kinetic analysis of the variants Y51F and E85Q. The Y51F variants show decreases in kcat relative to wild type, with the greatest losses observed for the more evolved constructs; they also exhibit significant decreases in kcat /KM across the series. Only modest decreases in kcat /KM are observed for the E85Q variants with little effect on kcat . Computed metrics of the degree of coupling between protonation states rise significantly as evolution proceeds and catalytic turnover rate increases. Specifically, the charge state of the catalytic lysine K83 becomes more strongly coupled to those of other amino acids as the enzyme evolves to a better catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI