Skeletal muscle mitochondrial network dynamics in metabolic disorders and aging

骨骼肌 生物 肌萎缩 胰岛素抵抗 线粒体 人口 生物信息学 疾病 内科学 内分泌学 医学 肥胖 遗传学 环境卫生
作者
Ciarán E. Fealy,Lotte Grevendonk,Joris Hoeks,Matthijs K. C. Hesselink
出处
期刊:Trends in Molecular Medicine [Elsevier]
卷期号:27 (11): 1033-1044 被引量:55
标识
DOI:10.1016/j.molmed.2021.07.013
摘要

Global demographics suggest an aging population, prompting concerns about an increase in the numbers of individuals with an age-associated loss of independence. Increasing adiposity is a risk factor for skeletal muscle insulin resistance, metabolic disease, and loss of skeletal muscle mass and function. Mitochondrial dynamics may be a therapeutic target for disorders of aging with an increasing number of studies suggest the presence of altered mitochondrial morphology in aging and obesity. Mitochondrial fragmentation is associated with metabolic disease development, while mitochondrial autophagy may be dysregulated in loss of muscle mass and strength. There remain significant gaps in the literature; however, the development of novel methodologies is facilitating a better understanding of mitochondrial network dynamics in age- and obesity- associated skeletal muscle dysfunction. With global demographics trending towards an aging population, the numbers of individuals with an age-associated loss of independence is increasing. A key contributing factor is loss of skeletal muscle mitochondrial, metabolic, and contractile function. Recent advances in imaging technologies have demonstrated the importance of mitochondrial morphology and dynamics in the pathogenesis of disease. In this review, we examine the evidence for altered mitochondrial dynamics as a mechanism in age and obesity-associated loss of skeletal muscle function, with a particular focus on the available human data. We highlight some of the areas where more data are needed to identify the specific mechanisms connecting mitochondrial morphology and skeletal muscle dysfunction. With global demographics trending towards an aging population, the numbers of individuals with an age-associated loss of independence is increasing. A key contributing factor is loss of skeletal muscle mitochondrial, metabolic, and contractile function. Recent advances in imaging technologies have demonstrated the importance of mitochondrial morphology and dynamics in the pathogenesis of disease. In this review, we examine the evidence for altered mitochondrial dynamics as a mechanism in age and obesity-associated loss of skeletal muscle function, with a particular focus on the available human data. We highlight some of the areas where more data are needed to identify the specific mechanisms connecting mitochondrial morphology and skeletal muscle dysfunction. programmed cell death. the process in which cellular contents are degraded by lysosomes or vacuoles and recycled. covers a variety of weight loss surgeries, including laparoscopic gastric banding surgery and Roux-en-Y gastric bypass (RYGB). a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle with or without loss of fat mass. a surgical procedure that involves the placement of an adjustable belt around the upper portion of the stomach using a laparoscope. The belt limits the expansion of the stomach conferring increased satiety in the patient. the deleterious effects of lipid accumulation in non-adipose tissue. the division of a single mitochondrion into two or more independent structures. the physical merging of the outer and then the inner mitochondrial membranes of two originally distinct mitochondria. thin double-membrane protrusions that connect the matrices of non-adjacent mitochondria. the selective degradation of mitochondria by autophagy. oxygen-containing radicals such as the superoxide anion (O2-), hydrogen peroxide (H2O2), and the hydroxyl radical (HO•) that can be generated by aerobic metabolism. ROS may serve as cell signaling molecules for normal biological processes; however, excessive production of ROS can result in damage to multiple cellular organelles and processes. a surgical procedure that involves the creation of a small gastric pouch connected to a roux limb, which bypasses a large portion of the small intestine. This results in the food bypassing the majority of the stomach, the duodenum, and the first 40–50 cm of jejunum. the age-associated loss of muscle mass and strength. a metabolic disorder that results in hyperglycemia due to reduced effectiveness of the hormone insulin (insulin resistance) an inability of the pancreas to produce enough insulin to overcome insulin resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ppf完成签到,获得积分20
刚刚
大大发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
聪明的芳芳完成签到,获得积分10
1秒前
3秒前
工藤新一发布了新的文献求助10
4秒前
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
cell应助mark采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得30
7秒前
7秒前
sylinmm完成签到,获得积分10
7秒前
呼斯勒应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
夏沫完成签到,获得积分10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
落后的哈密瓜应助大大采纳,获得10
9秒前
9秒前
科研通AI2S应助大大采纳,获得10
9秒前
追尾的猫完成签到 ,获得积分10
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774735
求助须知:如何正确求助?哪些是违规求助? 5619318
关于积分的说明 15436713
捐赠科研通 4907207
什么是DOI,文献DOI怎么找? 2640573
邀请新用户注册赠送积分活动 1588470
关于科研通互助平台的介绍 1543351