Netherlands F3 Interpretation Dataset

口译(哲学) 计算机科学 程序设计语言
作者
Lais Baroni,Reinaldo Mozart Silva,Rodrigo S. Ferreira,Daniel Civitarese,Daniela Szwarcman,Emilio Vital Brazil
出处
期刊:CERN European Organization for Nuclear Research - Zenodo 被引量:2
标识
DOI:10.5281/zenodo.1422787
摘要

Netherlands F3 Interpretation Dataset Machine learning and, more specifically, deep learning algorithms have seen remarkable growth in their popularity and usefulness in the last years. Such a fact is arguably due to three main factors: powerful computers, new techniques to train deeper networks and more massive datasets. Although the first two are readily available in modern computers and ML libraries, the last one remains a challenge for many domains. It is a fact that big data is a reality in almost all fields today, and geosciences are not an exception. However, to achieve the success of general-purpose applications such as ImageNet - for which there are +14 million labeled images for 1000 target classes - we not only need more data, we need more high-quality labeled data. Such demand is even more difficult when it comes to the Oil & Gas industry, in which confidentiality and commercial interests often hinder the sharing of datasets to others. In this letter, we present the Netherlands interpretation dataset, a contribution to the development of machine learning in seismic interpretation. The Netherlands F3 dataset was acquired in the North Sea, offshore Netherlands. The data is publicly available and comprises pos-stack data, eight horizons and well logs of 4 wells. However, for the dataset to be of practical use for our tasks, we had to reinterpret the seismic, generating nine horizons separating different seismic facies intervals. The interpreted horizons were used to create 601 labeled masks for inlines and 482 for crosslines. We present the results of two experiments to demonstrate the utility of our dataset. Dataset contents Crosslines: Classes: 9 Number of slices: 482 Records per class: 864 Total of records: 7,776 Inlines: Classes: 9 Number of slices: 601 Records per class: 2,994 Total of records: 26,496 Configuration Crop: [0, 0, 0, 0] Gray levels: 256 Noise: 0.3 Percentile: 5.0 Strides: [20, 20] Tile shape: [40, 40, 1]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
chenjzhuc应助阿庭采纳,获得40
2秒前
甜美白柏发布了新的文献求助10
3秒前
一一发布了新的文献求助10
5秒前
Suica完成签到 ,获得积分10
6秒前
科研通AI5应助妍妍采纳,获得10
6秒前
草履虫发布了新的文献求助10
6秒前
6秒前
朴素语风发布了新的文献求助10
6秒前
6秒前
华仔应助Guoqiang采纳,获得10
7秒前
sunce1990发布了新的文献求助10
7秒前
且放青山远完成签到,获得积分10
8秒前
lsong完成签到,获得积分10
8秒前
Akim应助阿威采纳,获得10
9秒前
10秒前
一一完成签到,获得积分20
10秒前
ronaldchen发布了新的文献求助50
11秒前
Hello应助wjr采纳,获得10
11秒前
Singularity应助wch666采纳,获得10
12秒前
12秒前
b15966013195完成签到,获得积分20
13秒前
我是老大应助bigstone采纳,获得10
13秒前
田様应助草履虫采纳,获得10
13秒前
13秒前
科研通AI5应助草履虫采纳,获得10
13秒前
来ll完成签到,获得积分10
14秒前
15秒前
科研通AI5应助yuminger采纳,获得10
16秒前
16秒前
ddli发布了新的文献求助10
18秒前
19秒前
19秒前
某某发布了新的文献求助10
19秒前
跳跃隶发布了新的文献求助10
19秒前
乐乐应助来ll采纳,获得10
20秒前
开心雨发布了新的文献求助10
20秒前
合适明雪完成签到,获得积分10
21秒前
花痴的易真完成签到,获得积分10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801867
求助须知:如何正确求助?哪些是违规求助? 3347688
关于积分的说明 10334678
捐赠科研通 3063810
什么是DOI,文献DOI怎么找? 1682125
邀请新用户注册赠送积分活动 807916
科研通“疑难数据库(出版商)”最低求助积分说明 763969