数学
跨临界分岔
分叉
功能性反应
鞍结分岔
同宿分支
分叉理论的生物学应用
分岔图
应用数学
分岔理论
混沌(操作系统)
控制理论(社会学)
倍周期分岔
固定点
理论(学习稳定性)
干草叉分叉
博格达诺夫-塔肯分岔
航程(航空)
数学分析
无限周期分岔
指数稳定性
霍普夫分叉
离散时间和连续时间
计算机模拟
点(几何)
稳定性理论
参数空间
价值(数学)
作者
Anuraj Singh,Preeti Deolia
标识
DOI:10.1142/s021833902140009x
摘要
In this paper, we study a discrete-time predator–prey model with Holling type-III functional response and harvesting in both species. A detailed bifurcation analysis, depending on some parameter, reveals a rich bifurcation structure, including transcritical bifurcation, flip bifurcation and Neimark–Sacker bifurcation. However, some sufficient conditions to guarantee the global asymptotic stability of the trivial fixed point and unique positive fixed points are also given. The existence of chaos in the sense of Li–Yorke has been established for the discrete system. The extensive numerical simulations are given to support the analytical findings. The system exhibits flip bifurcation and Neimark–Sacker bifurcation followed by wide range of dense chaos. Further, the chaos occurred in the system can be controlled by choosing suitable value of prey harvesting.
科研通智能强力驱动
Strongly Powered by AbleSci AI