DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation

一般化 人工智能 分割 模式识别(心理学) 深度学习 多发性硬化 计算机科学 机器学习 数学 医学 数学分析 精神科
作者
Reda Abdellah Kamraoui,Vinh‐Thong Ta,Thomas Tourdias,Boris Mansencal,José V. Manjón,Pierrick Coupé
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:76: 102312-102312 被引量:50
标识
DOI:10.1016/j.media.2021.102312
摘要

Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG'16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好运滚滚来完成签到 ,获得积分10
3秒前
chali48发布了新的文献求助10
4秒前
Nefelibate完成签到,获得积分10
4秒前
4秒前
上善若水完成签到 ,获得积分10
5秒前
6秒前
今后应助Guoqiang采纳,获得30
7秒前
7秒前
勤劳涵山发布了新的文献求助10
7秒前
8秒前
11发布了新的文献求助10
10秒前
轩辕白竹完成签到,获得积分10
11秒前
13秒前
yc发布了新的文献求助10
14秒前
勤劳涵山完成签到,获得积分10
18秒前
Guoqiang发布了新的文献求助30
18秒前
彭于晏应助邓炎林采纳,获得10
20秒前
gao_yiyi应助绵绵采纳,获得50
21秒前
Qiancheni完成签到,获得积分10
22秒前
Venovenom发布了新的文献求助10
28秒前
科研通AI5应助陈豆豆采纳,获得10
28秒前
完美世界应助smallsix采纳,获得10
32秒前
QIN完成签到,获得积分10
33秒前
yc完成签到,获得积分20
35秒前
35秒前
S.S.N完成签到 ,获得积分10
35秒前
陈豆豆完成签到,获得积分10
35秒前
邓炎林发布了新的文献求助10
39秒前
40秒前
40秒前
善学以致用应助挑挑采纳,获得10
42秒前
星辰大海应助JIA采纳,获得10
42秒前
43秒前
smallsix发布了新的文献求助10
44秒前
情怀应助xixihaha采纳,获得10
45秒前
45秒前
陈豆豆发布了新的文献求助10
46秒前
46秒前
情怀应助安安采纳,获得10
47秒前
小袁发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782130
求助须知:如何正确求助?哪些是违规求助? 3327565
关于积分的说明 10232237
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670024
邀请新用户注册赠送积分活动 799592
科研通“疑难数据库(出版商)”最低求助积分说明 758825