CD36
清道夫受体
载脂蛋白E
内分泌学
ABCA1
内科学
肿瘤坏死因子α
载脂蛋白B
超氧化物歧化酶
化学
胆固醇
受体
生物
脂蛋白
医学
氧化应激
生物化学
疾病
运输机
基因
作者
Jixin Liu,Qiuning Wang,Yujie Wei,Shining Zhang,Erqing Chai,Futian Tang
标识
DOI:10.1016/j.mvr.2021.104276
摘要
We previously reported that a calpain inhibitor (CAI) prevents the development of atherosclerosis in rats. This study aimed to investigate the effects of CAI (1 mg/kg) on atherosclerosis in apolipoprotein E knockout (ApoE KO) mice that were fed a high-fat diet (HFD) and explore the underlying mechanism by analyzing the expression of genes related to the uptake and efflux of cholesterol. Atherosclerotic plaques were evaluated. The activity of calpain in the aorta and that of superoxide dismutase (SOD) in the serum were assessed. Lipid profiles in the serum and liver were examined. Serum oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) levels were measured. The mRNA expressions of CD68, TNF-α, IL-6, CD36, scavenger receptor (SR-A), peroxisome proliferator-activated receptor gamma (PPAR-γ), liver-x-receptor alpha (LXR-α), and ATP-binding cassette transporter class A1 (ABCA1) in the aorta and peritoneal macrophages were also evaluated. CAI reduced calpain activity in the aorta. CAI also impeded atherosclerotic lesion formation and mRNA expression of CD68 in the aorta and peritoneal macrophages of ApoE KO mice compared with those of mice receiving HFD. However, CAI had no effect on body weight and lipid levels in both the serum and liver. CAI significantly decreased MDA, oxLDL, TNF-α, and IL-6 levels and increased SOD activity in the serum. Moreover, CAI significantly inhibited the mRNA expression of TNF-α and IL-6 genes in the aorta and peritoneal macrophages. In addition, CAI significantly downregulated the mRNA expression of scavenger receptors CD36 and SR-A and upregulated the expression of genes involved in the cholesterol efflux pathway, i.e., PPAR-γ, LXR-α, and ABCA1 in the aorta and peritoneal macrophages. CAI inhibited the development of atherosclerotic lesions in ApoE KO mice, and this effect might be related to the reduction of oxidative stress and inflammation and the improvement of cholesterol intake and efflux pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI