亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis

纳米孔 电化学 纳米技术 分子 化学 材料科学 电极 物理化学 有机化学
作者
Chan Cao,Yi‐Tao Long
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:51 (2): 331-341 被引量:152
标识
DOI:10.1021/acs.accounts.7b00143
摘要

Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis, we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Fangfang发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
勤恳八宝粥完成签到 ,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
畅快甜瓜发布了新的文献求助30
7秒前
15秒前
huahuahahajiu发布了新的文献求助10
18秒前
1分钟前
1分钟前
飞快的翼完成签到,获得积分10
1分钟前
1分钟前
善学以致用应助Fangfang采纳,获得10
1分钟前
科研通AI6.1应助jy采纳,获得10
1分钟前
1分钟前
Fangfang发布了新的文献求助10
1分钟前
琅琊为刃完成签到,获得积分10
1分钟前
1分钟前
Criminology34举报哈哈哈哈求助涉嫌违规
2分钟前
orixero应助畅快甜瓜采纳,获得10
2分钟前
领导范儿应助Fangfang采纳,获得10
2分钟前
2分钟前
2分钟前
jy发布了新的文献求助10
2分钟前
2分钟前
开心完成签到 ,获得积分10
2分钟前
Criminology34举报哈哈哈哈求助涉嫌违规
2分钟前
2分钟前
2分钟前
2分钟前
畅快甜瓜发布了新的文献求助10
3分钟前
KKLUV发布了新的文献求助10
3分钟前
畅快甜瓜发布了新的文献求助10
3分钟前
3分钟前
我是老大应助jy采纳,获得10
3分钟前
3分钟前
3分钟前
jy发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732270
求助须知:如何正确求助?哪些是违规求助? 5337908
关于积分的说明 15322123
捐赠科研通 4877888
什么是DOI,文献DOI怎么找? 2620743
邀请新用户注册赠送积分活动 1569962
关于科研通互助平台的介绍 1526574