马格农
凝聚态物理
共振(粒子物理)
物理
铁磁共振
自旋波
电子顺磁共振
激发
铁磁性
磁场
量子力学
磁化
作者
Shunsuke C. Furuya,Tsutomu Momoi
出处
期刊:Physical review
[American Physical Society]
日期:2018-03-20
卷期号:97 (10)
被引量:16
标识
DOI:10.1103/physrevb.97.104411
摘要
In this paper we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector $\bm k={\bm 0}$. Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an $S=1$ bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the $S=1/2$ frustrated ferromagnets and also the $S=1/2$ orthogonal dimer spin system SrCu$_2$(BO$_3$)$_2$, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low-magnetization regime of SrCu$_2$(BO$_3$)$_2$.
科研通智能强力驱动
Strongly Powered by AbleSci AI