Designing and defining dynamic protein cage nanoassemblies in solution

小角X射线散射 生物系统 理论(学习稳定性) 计算机科学 自组装 领域(数学分析) 纳米技术 材料科学 高分子 散射 化学 物理 数学 机器学习 数学分析 光学 生物 生物化学
作者
Yen-Ting Lai,Greg L. Hura,Kevin Dyer,Henry Y. H. Tang,John A. Tainer,Todd O. Yeates
出处
期刊:Science Advances [American Association for the Advancement of Science]
卷期号:2 (12) 被引量:42
标识
DOI:10.1126/sciadv.1501855
摘要

Central challenges in the design of large and dynamic macromolecular assemblies for synthetic biology lie in developing effective methods for testing design strategies and their outcomes, including comprehensive assessments of solution behavior. We created and validated an advanced design of a 600-kDa protein homododecamer that self-assembles into a symmetric tetrahedral cage. The monomeric unit is composed of a trimerizing apex-forming domain genetically linked to an edge-forming dimerizing domain. Enhancing the crystallographic results, high-throughput small-angle x-ray scattering (SAXS) comprehensively contrasted our modifications under diverse solution conditions. To generate a phase diagram associating structure and assembly, we developed force plots that measure dissimilarity among multiple SAXS data sets. These new tools, which provided effective feedback on experimental constructs relative to design, have general applicability in analyzing the solution behavior of heterogeneous nanosystems and have been made available as a web-based application. Specifically, our results probed the influence of solution conditions and symmetry on stability and structural adaptability, identifying the dimeric interface as the weak point in the assembly. Force plots comparing SAXS data sets further reveal more complex and controllable behavior in solution than captured by our crystal structures. These methods for objectively and comprehensively comparing SAXS profiles for systems critically affected by solvent conditions and structural heterogeneity provide an enabling technology for advancing the design and bioengineering of nanoscale biological materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助飞羽采纳,获得10
刚刚
JamesPei应助fang采纳,获得30
3秒前
4秒前
4秒前
4秒前
swt15943201900关注了科研通微信公众号
5秒前
anqi完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Dong_Huan关注了科研通微信公众号
7秒前
7秒前
hv完成签到,获得积分10
8秒前
8秒前
xhs发布了新的文献求助10
9秒前
Jr L发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
斯文败类应助zsy采纳,获得10
10秒前
脑洞疼应助六初采纳,获得10
10秒前
12秒前
anqi发布了新的文献求助10
13秒前
13秒前
maerray发布了新的文献求助10
13秒前
科研通AI5应助lx采纳,获得10
15秒前
脑洞疼应助快乐的书雁采纳,获得10
15秒前
星辰大海应助Jr L采纳,获得10
16秒前
完美世界应助xhs采纳,获得10
17秒前
17秒前
又习发布了新的文献求助10
17秒前
18秒前
zxxxx完成签到,获得积分20
18秒前
呆萌的飞槐完成签到,获得积分10
19秒前
NexusExplorer应助YiPeng采纳,获得10
20秒前
21秒前
害羞外套完成签到,获得积分20
21秒前
21秒前
zxxxx发布了新的文献求助10
22秒前
xintai完成签到,获得积分10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241365
求助须知:如何正确求助?哪些是违规求助? 3775024
关于积分的说明 11854787
捐赠科研通 3429936
什么是DOI,文献DOI怎么找? 1882634
邀请新用户注册赠送积分活动 934478
科研通“疑难数据库(出版商)”最低求助积分说明 841041