Reinforcement Learning in Robotics: A Survey

强化学习 人工智能 机器人学 背景(考古学) 领域(数学分析) 机器人 机器人学习 计算机科学 功能(生物学) 钢筋 机器学习 人机交互 工程类 移动机器人 数学 结构工程 进化生物学 生物 数学分析 古生物学
作者
Jens Kober,Jan Peters
出处
期刊:Adaptation, learning, and optimization 卷期号:: 579-610 被引量:143
标识
DOI:10.1007/978-3-642-27645-3_18
摘要

As most action generation problems of autonomous robots can be phrased in terms of sequential decision problems, robotics offers a tremendously important and interesting application platform for reinforcement learning. Similarly, the real-world challenges of this domain pose a major real-world check for reinforcement learning. Hence, the interplay between both disciplines can be seen as promising as the one between physics and mathematics. Nevertheless, only a fraction of the scientists working on reinforcement learning are sufficiently tied to robotics to oversee most problems encountered in this context. Thus, we will bring the most important challenges faced by robot reinforcement learning to their attention. To achieve this goal, we will attempt to survey most work that has successfully applied reinforcement learning to behavior generation for real robots. We discuss how the presented successful approaches have been made tractable despite the complexity of the domain and will study how representations or the inclusion of prior knowledge can make a significant difference. As a result, a particular focus of our chapter lies on the choice between model-based and model-free as well as between value function-based and policy search methods. As a result, we obtain a fairly complete survey of robot reinforcement learning which should allow a general reinforcement learning researcher to understand this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡然冬灵应助Cherish采纳,获得80
1秒前
1秒前
yan完成签到,获得积分10
1秒前
1秒前
若雨凌风应助wh采纳,获得20
2秒前
2秒前
3秒前
科研通AI5应助戴志坚采纳,获得100
3秒前
小鲤鱼发布了新的文献求助10
4秒前
谈笑间应助Yzh采纳,获得10
4秒前
七七八八发布了新的文献求助10
4秒前
和谐的万宝路完成签到,获得积分10
5秒前
5秒前
6秒前
小白不白完成签到,获得积分10
6秒前
荣惜完成签到 ,获得积分10
6秒前
笑点低虔完成签到 ,获得积分20
6秒前
柏梦岚发布了新的文献求助10
6秒前
sunnyfriend完成签到,获得积分10
7秒前
拉长的战斗机完成签到,获得积分10
7秒前
largpark完成签到 ,获得积分10
8秒前
xujiejiuxi发布了新的文献求助10
9秒前
背后的钢铁侠完成签到,获得积分10
9秒前
hu完成签到,获得积分10
11秒前
脑洞疼应助学术laji采纳,获得10
11秒前
霍霍完成签到 ,获得积分10
11秒前
liunerd完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
周洋洋关注了科研通微信公众号
13秒前
CipherSage应助柏梦岚采纳,获得10
13秒前
13秒前
13秒前
14秒前
科研白白完成签到,获得积分10
15秒前
15秒前
吃饱但很饿完成签到,获得积分10
15秒前
松鼠15111发布了新的文献求助10
16秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799773
求助须知:如何正确求助?哪些是违规求助? 3345093
关于积分的说明 10323514
捐赠科研通 3061617
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807090
科研通“疑难数据库(出版商)”最低求助积分说明 763462