微塑料
氧化应激
肺纤维化
化学
吸入
纤维化
Wnt信号通路
吸入染毒
信号转导
药理学
内科学
医学
生物化学
解剖
环境化学
作者
Xuran Li,Tongtong Zhang,Wenting Lv,Hui Wang,Hao Chen,Qinghua Xu,Hourong Cai,Jinghong Dai
标识
DOI:10.1016/j.ecoenv.2022.113238
摘要
Polystyrene microplastics (PS-MPs) are emerging pollutants that are absorbed by organisms. Due to their small volume and strong biological permeability, they affect the biological functions of cells. In recent years, several studies have detected PS-MPs in air samples, which may damage the human respiratory system following inhalation. The Masson trichrome staining, immunofluorescence, and western blotting assays were conducted to analyze the effects of PS-MPs on pulmonary fibrosis. Alveolar epithelial injuries were assessed through confocal microscopy, and the levels of SOD and GSH were used to evaluate oxidative stress. Our analyzes demonstrated that inhalation of the PS-MPs induces pulmonary fibrosis in a dose-dependent manner in mice. In high dose group (6.25 mg/kg), the PS-MPs significantly increased the expression of α-SMA, Vimentin and Col1a (p < 0.05). Immunofluorescence assays showed decreased levels of SP-C and increased levels of KL-6 in the PS-MPs group. The suppression of SOD (1.46 times) and GSH-Px (2.27 times) indicated that inhalation of microplastics triggered intensive oxidative stress in lungs. Moreover, there was activation of the Wnt/β-catenin signaling pathway in the PS-MPs group. In addition, the data showed that antioxidant melatonin (50 mg/kg) alleviated the PS-MPs-induced pulmonary fibrosis. Taken together, our analysis demonstrated that inhalation of polystyrene microplastics induces pulmonary fibrosis via activation of oxidative stress and Wnt/β-catenin signaling pathway in mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI