Encoded Feature Enhancement in Watermarking Network for Distortion in Real Scenes

水印 计算机科学 数字水印 稳健性(进化) 失真(音乐) 人工智能 相位畸变 编码器 图像质量 噪音(视频) 特征(语言学) 模式识别(心理学) 算法 计算机视觉 图像(数学) 电信 带宽(计算) 操作系统 哲学 滤波器(信号处理) 基因 生物化学 化学 放大器 语言学
作者
Han Fang,Zhaoyang Jia,Hang Zhou,Zehua Ma,Weiming Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2648-2660 被引量:24
标识
DOI:10.1109/tmm.2022.3149641
摘要

Deep-learning based watermarking framework has been extensively studied recently. The main structure of such framework is an encoder, a noise layer and a decoder. By training with different distortion sets in the noise layer, the whole network can realize different robustness. However, such framework has a huge drawback that the noise layer must be differentiable, otherwise it cannot be trained end-to-end. But for practical use, much distortions are non-differentiable, so such framework cannot be applied. To address such limitations, this paper propose a triple-phase watermarking framework for practical distortions. The proposed framework consists of three phases including a noise-free initial phase, a mask-guided frequency enhancement phase and an adversarial-training phase. Phase 1 aims to initialize an encoder to embed watermark with high visual quality and a decoder to extract the watermark. In order to generate high quality watermarked image, we design the just noticeable difference (JND)-mask image loss in phase 1 to guide the encoder. At phase 2, based on the investigation of the encoded features and distortions, we propose a mask-guided frequency enhancement algorithm to enhance the encoded feature which ensures the survival of such features after distortion, so that there will be enough features to be learned in phase 3. And phase 3 aims to train a stronger decoder to extract the watermark from the image after practical distortions. The combination of these 3 phases can well handle the non-differentiable problems and make the whole network trainable. Various experiments indicate the superior performance of the proposed scheme in the view of traditional differentiable image processing distortion robustness and practical non-differentiable distortion robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
careS完成签到,获得积分10
刚刚
池不胖发布了新的文献求助10
1秒前
希望天下0贩的0应助luu采纳,获得10
1秒前
lh完成签到,获得积分10
1秒前
ihtw发布了新的文献求助10
1秒前
lql完成签到 ,获得积分10
2秒前
慕青应助小詹采纳,获得10
2秒前
2秒前
yuer完成签到,获得积分20
2秒前
当归完成签到,获得积分10
2秒前
科研通AI5应助Ta采纳,获得10
3秒前
lan完成签到,获得积分10
3秒前
今后应助我吃小饼干采纳,获得10
4秒前
丿小智灬发布了新的文献求助10
4秒前
i7发布了新的文献求助10
4秒前
5秒前
学术大王完成签到,获得积分20
6秒前
6秒前
6秒前
风云发布了新的文献求助10
6秒前
科研通AI5应助daihia7采纳,获得10
7秒前
7秒前
8秒前
充电宝应助酷炫小馒头采纳,获得10
8秒前
9秒前
含糊的代丝完成签到 ,获得积分10
9秒前
大气傲易完成签到 ,获得积分10
10秒前
10秒前
付品聪发布了新的文献求助10
10秒前
NIKE112完成签到,获得积分10
11秒前
11秒前
古丁完成签到,获得积分10
11秒前
11秒前
大橙子发布了新的文献求助10
11秒前
11秒前
桢桢树发布了新的文献求助10
11秒前
RTP发布了新的文献求助10
12秒前
kiki完成签到,获得积分10
13秒前
13秒前
852应助13223456采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789084
求助须知:如何正确求助?哪些是违规求助? 3334196
关于积分的说明 10267701
捐赠科研通 3050439
什么是DOI,文献DOI怎么找? 1674012
邀请新用户注册赠送积分活动 802396
科研通“疑难数据库(出版商)”最低求助积分说明 760570