推荐系统
产品(数学)
计算机科学
用户满意度
组分(热力学)
万维网
人机交互
数学
几何学
热力学
物理
出处
期刊:Advances in logistics, operations, and management science book series
日期:2021-12-20
卷期号:: 35-67
被引量:3
标识
DOI:10.4018/978-1-7998-7793-6.ch002
摘要
A recommendation system is a significant part of artificial intelligence (AI) to help users' access information at any time and from anywhere. Online product recommender systems are widely used to recommend products based on consumers' preferences. The traditional recommendation algorithms of recommendation engines do not meet the needs of users in the AI environment when exposed to large amounts of data resulting in a low recommendation efficiency. To address this, a personalized recommendation system was introduced. These personalized recommendation systems (PRS) are an important component for ecommerce players in the Indian e-commerce aspects. Since personalized recommendations are becoming increasingly popular, this study examines information processing theory with respect to personalized recommendations and their impact on user satisfaction. Further, relationships between the variables were examined by conducting regression analysis and found a positive correlation exists between personalized product recommendation and user satisfaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI