Hierarchical Imitation Learning via Subgoal Representation Learning for Dynamic Treatment Recommendation

模仿 边距(机器学习) 代表(政治) 计算机科学 人工智能 机器学习 任务(项目管理) 心理学 社会心理学 工程类 政治学 政治 法学 系统工程
作者
Lu Wang,Ruiming Tang,Xiaofeng He,Xiuqiang He
标识
DOI:10.1145/3488560.3498535
摘要

Dynamic Treatment Recommendation (DTR) is a sequence of tailored treatment decision rules which can be grouped as individual sub-tasks. As the reward signals in DTR are hard to design, Imitation Learning (IL) has achieved great success as it is effective in mimicking doctors' behaviors from their demonstrations without explicit reward signals. As a patient may have several different symptoms, the behaviors in doctors' demonstrations can often be grouped to handle individual symptoms. However, a single flat policy learned by IL is difficult to mimic doctors' demonstrations with such hierarchical structure, where low-level behaviors are switching from one symptom to another controlled by high-level decisions. Due to this observation, we consider Hierarchical Imitation Learning methods as good solutions for DTR. In this paper, we propose a novel Subgoal conditioned HIL framework (short for SHIL), where a high-level policy sequentially sets a subgoal for each sub-task without prior knowledge, and the low-level policy for sub-tasks is learned to reach the subgoal. To get rid of prior knowledge, a self-supervised learning method is proposed to learn an effective representation for each subgoal. More specifically, we carefully designed to encourage diverse representations among different subgoals. To demonstrate that SHIL is able to learn meaningful high-level policy and low-level policy that accurately reproduces complex doctors' demonstrations, we conduct experiments on a real-world medical data from health care domain, MIMIC-III. Compared with state-of-the-art baselines, SHIL improves the likelihood of patient survival by a significant margin and provides explainable recommendation with hierarchical structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jeff完成签到,获得积分10
1秒前
浩然完成签到,获得积分10
1秒前
oligo完成签到 ,获得积分10
5秒前
zikncy发布了新的文献求助10
5秒前
香蕉觅云应助轻松笙采纳,获得10
6秒前
Orange应助somous采纳,获得10
6秒前
8秒前
感性的寄真完成签到 ,获得积分10
9秒前
11秒前
11秒前
12秒前
领导范儿应助青橘短衫采纳,获得10
12秒前
乐乐应助水的很厉害采纳,获得10
15秒前
15秒前
坚定的海白完成签到 ,获得积分10
16秒前
16秒前
阿南发布了新的文献求助10
16秒前
强健的雅绿完成签到,获得积分10
17秒前
轻松笙发布了新的文献求助10
17秒前
FashionBoy应助Petrichor采纳,获得10
17秒前
17秒前
yu完成签到 ,获得积分10
18秒前
粒子一号完成签到,获得积分10
20秒前
somous发布了新的文献求助10
20秒前
顺利毕业完成签到,获得积分10
22秒前
23秒前
洲洲完成签到 ,获得积分10
24秒前
归尘发布了新的文献求助10
26秒前
26秒前
上官若男应助Ccc采纳,获得10
26秒前
somous完成签到,获得积分10
27秒前
Bin_Liu发布了新的文献求助10
28秒前
cherry bomb完成签到,获得积分10
29秒前
pluto应助坚定的海白采纳,获得20
30秒前
roy_chiang完成签到,获得积分0
30秒前
lucky完成签到,获得积分20
31秒前
31秒前
khh发布了新的文献求助10
32秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522