适体
微流控
化学
相对标准差
纳米技术
色谱法
病毒学
检出限
计算生物学
分子生物学
生物
材料科学
作者
Tyler Chozinski,B. Scott Ferguson,William S. Fisher,Shencheng Ge,Qiang Gong,Hui Kang,J. Mcdermott,Alexander P. Scott,Wentao Shi,J.J. Trausch,Thorsten Verch,Matthew J. Vukovich,Jinpeng Wang,Jinran Wu,Qin Yang
标识
DOI:10.1021/acs.analchem.1c05093
摘要
Global deployment of vaccines poses significant challenges in the distribution and use of the accompanying immunoassays, one of the standard methods for quality control of vaccines, particularly when establishing assays in countries worldwide to support testing/release upon importation. This work describes our effort toward developing an integrated, portable device to carry out affinity assays for viral particles quantification in viral vaccines by incorporating (i) aptamers, (ii) microfluidic devices, and (iii) electrochemical detection. We generated and characterized more than eight aptamers against multiple membrane proteins of cytomegalovirus (CMV), which we used as a model system and designed and fabricated electrochemical microfluidic devices to measure CMV concentrations in a candidate vaccine under development. The aptamer-based assays provided a half maximal effective concentration, EC50, of 12 U/mL, comparable to that of an ELISA using a pair of antibodies (EC50 60 U/mL). The device measured relative CMV concentrations accurately (within ±10% bias) and precisely (11%, percent relative standard deviation). This work represents the critical first steps toward developing simple, affordable, and robust affinity assays for global deployment without the need for sensitive equipment and extensive analyst training.
科研通智能强力驱动
Strongly Powered by AbleSci AI