Tissue Imprinting on 2D Nanoflakes-Capped Silicon Nanowires for Lipidomic Mass Spectrometry Imaging and Cancer Diagnosis

质谱成像 材料科学 纳米技术 硅纳米线 纳米线 癌症 质谱法 化学 光电子学 医学 色谱法 内科学
作者
Xingyue Liu,Chen Zhao,Tao Wang,Xinrong Jiang,Xuetong Qu,Wei Duan,Fengna Xi,Zhengfu He,Jianmin Wu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (4): 6916-6928 被引量:55
标识
DOI:10.1021/acsnano.2c02616
摘要

Spatially resolved tissue lipidomics is essential for accurate intraoperative and postoperative cancer diagnosis by revealing molecular information in the tumor microenvironment. Matrix-free laser desorption ionization mass spectrometry imaging (LDI-MSI) is an emerging attractive technology for label-free visualization of metabolites distributions in biological specimens. However, the development of LDI-MSI technology that could conveniently and authentically reveal molecular distribution on tissue samples is still a challenge. Herein, we present a tissue imprinting technology by retaining tissue lipids on 2D nanoflakes-capped silicon nanowires (SiNWs) for further mass spectrometry imaging and cancer diagnosis. The 2D nanoflakes were prepared by liquid exfoliation of molybdenum disulfide (MoS2) with nitrogen-doped graphene quantum dots (NGQDs), which serve as both intercalation agent and dispersant. The obtained NGQD@MoS2 nanoflakes were then decorated on the tip of vertical SiNWs, forming a hybrid NGQD@MoS2/SiNWs nanostructure, which display excellent lipid extraction ability, enhanced LDI efficiency and molecule imaging capability. The peak number and total ion intensity of different lipids species on animal lung tissues obtained by tissue imprinting LDI-MSI on NGQD@MoS2/SiNWs were ∼4–5 times greater than those on SiNWs substrate. As a proof-of-concept demonstration, the NGQD@MoS2/SiNWs nanostructure was further applied to visualize phospholipids on sliced non small cell lung cancer (NSCLC) tissue along with the adjacent normal tissue. On the basis of selected feature lipids and machine learning algorithm, a prediction model was constructed to discriminate NSCLC tissues from the adjacent normal tissues with an accuracy of 100% for the discovery cohort and 91.7% for the independent validation cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助漂亮的孤丹采纳,获得10
2秒前
超级的抽屉完成签到,获得积分10
3秒前
完美世界应助赖善若采纳,获得10
5秒前
正直美女发布了新的文献求助10
5秒前
6秒前
搜集达人应助布医采纳,获得10
9秒前
小二郎应助ZHY采纳,获得10
9秒前
Hello应助老迟到的友菱采纳,获得10
13秒前
清脆凡阳完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
HH完成签到,获得积分20
16秒前
无花果应助正直美女采纳,获得10
17秒前
winner完成签到 ,获得积分10
17秒前
机灵的海蓝完成签到,获得积分10
18秒前
水木年华完成签到,获得积分10
19秒前
顾矜应助Kismet采纳,获得10
19秒前
枫亭完成签到 ,获得积分10
19秒前
追寻的白安完成签到,获得积分20
20秒前
juju发布了新的文献求助10
21秒前
penguin应助热心馒头采纳,获得10
21秒前
白路完成签到,获得积分10
21秒前
赖善若发布了新的文献求助10
21秒前
nuanyan1208发布了新的文献求助30
21秒前
Lds发布了新的文献求助10
22秒前
月半完成签到 ,获得积分10
23秒前
顺利毕业的小刘完成签到,获得积分20
24秒前
碎冰蓝发布了新的文献求助10
24秒前
26秒前
艾斯完成签到 ,获得积分10
29秒前
29秒前
29秒前
29秒前
30秒前
彭于晏应助Lds采纳,获得10
30秒前
31秒前
31秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243