亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Support Vector Regression for Developing Ground-Motion Models for Arias Intensity, Cumulative Absolute Velocity, and Significant Duration for the Kanto Region, Japan

标准差 力矩震级标度 震级(天文学) 统计 支持向量机 地震动 数学 强度(物理) 回归分析 地质学 地震学 计算机科学 人工智能 物理 缩放比例 天文 量子力学 几何学
作者
Jinjun Hu,Chaoyue Jin,Hui Zhang,Lei Hu,Zhongwei Wang
出处
期刊:Seismological Research Letters [Seismological Society of America]
卷期号:93 (3): 1619-1635 被引量:16
标识
DOI:10.1785/0220210259
摘要

Abstract The Kanto region is an earthquake disaster-prone area where it is necessary to conduct regional seismic hazard analysis. Ground-motion models (GMMs) of Arias intensity, cumulative absolute velocity, and significant duration are developed by support vector regression (SVR) for the Kanto region, Japan. In contrast to traditional regression programs used in previous models, which are usually expressed as a mathematical function with a minimum observed training error as constraints, the SVR algorithm has one major feature: it minimizes the generalized error bound to improve robustness. In the database for this study, the regional ground-motion database contains 15,960 ground-motion records of 130 earthquake events from 2000 to 2020 with the Japan Meteorological Agency (JMA) with a magnitude MJMA 5.0–8.0 and a rupture distance less than 200 km. In developing SVR GMMs, the moment magnitude (Mw), rupture distance (Rrup), and shear-wave velocity averaged in the top 30 m of soil (VS30) were adopted to characterize the source, path, and site conditions. To verify the rationality and effectiveness of the SVR GMMs, the performance indices (e.g., correlation coefficients and slope coefficients) and residuals are analyzed. The residuals of the SVR GMMs have no significant deviation in magnitude, rupture distance, or VS30. The standard deviations of model residuals are calculated using the regional ground-motion database, and the standard deviations of SVR GMMs are less than those of previous models developed based on a Japanese or global database. Furthermore, the SVR GMMs are also compared with observed data and the previous GMMs. Data-driven SVR method constrains statistical theory and probability theory to develop GMMs, which can eliminate the problem that the specific form of the previous models may affect the prediction performance and capture the regional attenuation characteristics effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
15秒前
科研cc完成签到,获得积分20
20秒前
22秒前
孤独剑完成签到 ,获得积分10
36秒前
37秒前
Fairy完成签到,获得积分10
40秒前
1分钟前
1分钟前
1分钟前
1分钟前
Gydl发布了新的文献求助30
1分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
Aimee完成签到,获得积分10
2分钟前
2分钟前
李某发布了新的文献求助10
2分钟前
852应助调皮芫采纳,获得10
2分钟前
脑洞疼应助紫津采纳,获得10
2分钟前
2分钟前
2分钟前
紫津发布了新的文献求助10
3分钟前
Panther完成签到,获得积分10
3分钟前
紫津完成签到,获得积分10
3分钟前
3分钟前
3分钟前
调皮芫发布了新的文献求助10
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
万能图书馆应助调皮芫采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
调皮芫发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Ava应助Yanz采纳,获得10
5分钟前
pegasus0802完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078273
求助须知:如何正确求助?哪些是违规求助? 4297068
关于积分的说明 13387809
捐赠科研通 4119729
什么是DOI,文献DOI怎么找? 2256199
邀请新用户注册赠送积分活动 1260513
关于科研通互助平台的介绍 1194073