Real‐time deep‐learning inversion of seismic full waveform data for CO2 saturation and uncertainty in geological carbon storage monitoring

区域地质 反演(地质) 经济地质学 工程地质 深度学习 饱和(图论) 人工神经网络 地质学 蒙特卡罗方法 合成数据 计算机科学 遥感 水文地质学 人工智能 地震学 构造盆地 统计 变质岩石学 数学 古生物学 岩土工程 组合数学 火山作用 构造学
作者
Evan Schankee Um,David Alumbaugh,Youzuo Lin,Shihang Feng
出处
期刊:Geophysical Prospecting [Wiley]
卷期号:72 (1): 199-212 被引量:21
标识
DOI:10.1111/1365-2478.13197
摘要

ABSTRACT Deep‐learning inversion has recently drawn attention in geological carbon storage research due to its potential of imaging and monitoring carbon storage in real time, significantly improving efficiency and safety of carbon storage operations. We present a deep‐learning full waveform inversion method that after the neural network has been trained can image CO 2 saturation and its uncertainty in real time. Our deep‐learning inversion method is based on the U‐Net architecture with the neural network trained on pairs of synthetic seismic data and CO 2 saturation models. Accordingly, our training establishes a mapping relationship between seismic data and CO 2 saturation models and once fully trained directly estimates CO 2 saturation as a function of subsurface location. We further quantify uncertainties of CO 2 saturation estimates using the Monte Carlo dropout method and a bootstrap aggregating method. For this proof‐of‐concept study, the CO 2 training models and data are derived from the Kimberlina 1.2 model, a hypothetical 3D geological carbon storage model that is constructed based on various geological and hydrological data from the Southern San Joaquin Basin, California. We perform deep‐learning inversion experiments using noise‐free and noisy training and test data sets and compare the results. Our modelling experiments show that (1) the deep‐learning inversion can estimate 2D distributions of CO 2 fairly well even in the presence of Gaussian random noise and (2) both CO 2 saturation imaging and uncertainty quantification can be done in real time. Our results suggest that the deep‐learning inversion method can serve as a robust real‐time monitoring tool for geological carbon storage and/or other time‐varying reservoir/aquifer properties that result from injection, extraction, and/or other subsurface transport phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助蓓蓓采纳,获得10
1秒前
很有精神的疯批大美人关注了科研通微信公众号
1秒前
1秒前
1秒前
小童完成签到,获得积分10
2秒前
3秒前
4秒前
drtheo发布了新的文献求助20
4秒前
Axs发布了新的文献求助30
5秒前
hxh完成签到 ,获得积分10
5秒前
yyy完成签到,获得积分10
5秒前
豆豆啊发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
一期一完成签到,获得积分10
9秒前
FB完成签到,获得积分10
10秒前
挖井的人完成签到,获得积分10
10秒前
wushuang完成签到,获得积分10
10秒前
11秒前
落寞鱼关注了科研通微信公众号
12秒前
12秒前
Shirley发布了新的文献求助10
12秒前
拥挤而独行完成签到,获得积分10
12秒前
华仔应助222采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
坦率的匪完成签到,获得积分0
12秒前
13秒前
翻译度完成签到,获得积分10
13秒前
lkkkkk完成签到,获得积分10
14秒前
火星上碧完成签到,获得积分10
15秒前
15秒前
JamesPei应助drtheo采纳,获得20
15秒前
16秒前
抉择发布了新的文献求助10
17秒前
qq发布了新的文献求助20
18秒前
18秒前
19秒前
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138820
求助须知:如何正确求助?哪些是违规求助? 3675641
关于积分的说明 11618965
捐赠科研通 3369890
什么是DOI,文献DOI怎么找? 1851114
邀请新用户注册赠送积分活动 914339
科研通“疑难数据库(出版商)”最低求助积分说明 829187