清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning-based monitoring of laser powder bed fusion process on variable time-scales using heterogeneous sensing and operando X-ray radiography guidance

材料科学 锁孔 过程(计算) 人工智能 融合 计算机科学 卷积神经网络 一般化 机器学习 机械工程 复合材料 工程类 数学分析 语言学 哲学 数学 焊接 操作系统
作者
Vigneashwara Pandiyan,Giulio Masinelli,Navarre Claire,Tri Le‐Quang,Milad Hamidi Nasab,Charlotte de Formanoir,Reza Esmaeilzadeh,Sneha Goel,Federica Marone,Roland E. Logé,S. Van Petegem,Kilian Wasmer
出处
期刊:Additive manufacturing [Elsevier]
卷期号:58: 103007-103007 被引量:55
标识
DOI:10.1016/j.addma.2022.103007
摘要

Harnessing the full potential of the metal-based Laser Powder Bed Fusion process (LPBF) relies heavily on how effectively the overall reliability and stability of the manufactured part can be ensured. To this aim, the recent advances in sensorization and processing of the associated signals using Machine Learning (ML) techniques have made in situ monitoring a viable alternative to post-mortem techniques such as X-ray tomography or ultrasounds for the assessment of parts. Indeed, the primary advantage of in situ monitoring over post-mortem analysis is that the process can be stopped in case of discrepancies, saving resources. Additionally, mitigations to repair the discrepancies can also be performed. However, the in situ monitoring strategies based on classifying processing regimes reported in the literature so far operate on signals of fixed length in time, constraining the generalization of the trained ML model by not allowing monitoring processes with heterogeneous laser scanning strategies. As a part of this work, we try to bridge this gap by developing a hybrid Deep Learning (DL) model by combining Convolutional Neural Networks (CNNs) with Long-Short Term Memory (LSTM) that can operate over variable time-scales. The proposed hybrid DL model was trained on signals obtained from a heterogeneous time-synced sensing system consisting of four sensors, namely back reflection (BR), Visible, Infra-Red (IR), and structure-borne Acoustic Emission (AE). The signals captured different phenomena related to the LPBF process zone and were used to classify three regimes: Lack of Fusion (LoF), conduction mode and Keyhole. Specifically, these three regimes were induced by printing cubes out of austenitic Stainless steel (316 L) on a mini-LPBF device with operando high-speed synchrotron X-ray imaging and signal acquisition with the developed heterogeneous sensing system. The operando X-ray imaging analysis ensured that the regimes correlated with the defined process parameters. During the validation procedure of the trained hybrid DL model, the model predicted three regimes with an accuracy of about 98% across various time scales, ranging from 0.5 ms to 4 ms. In addition to tracking the model performance, a sensitivity analysis of the trained hybrid model was conducted, which showed that the BR and AE sensors carried more relevant information to guide the decision-making process than the other two sensors used in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年年完成签到,获得积分10
1秒前
jfc完成签到 ,获得积分10
7秒前
8秒前
9秒前
情怀应助医研采纳,获得10
10秒前
Selena发布了新的文献求助10
12秒前
19秒前
tt完成签到,获得积分10
29秒前
煮饭吃Zz完成签到 ,获得积分10
52秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
55秒前
KP完成签到,获得积分10
1分钟前
1分钟前
Selena发布了新的文献求助10
1分钟前
1分钟前
1分钟前
医研发布了新的文献求助10
1分钟前
飞飞style发布了新的文献求助10
1分钟前
科研通AI6应助飞飞style采纳,获得10
1分钟前
2分钟前
有害学术辣鸡完成签到 ,获得积分10
2分钟前
pegasus0802完成签到,获得积分10
2分钟前
曦耀发布了新的文献求助30
3分钟前
完美世界应助西门晴采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
菜鸟学习完成签到 ,获得积分10
4分钟前
4分钟前
西门晴发布了新的文献求助10
4分钟前
汉堡包应助Jenny采纳,获得10
4分钟前
4分钟前
春夏爱科研完成签到,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
rrrrwq完成签到,获得积分20
5分钟前
rrrrwq发布了新的文献求助10
6分钟前
西门晴完成签到,获得积分10
6分钟前
飞飞style发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628431
求助须知:如何正确求助?哪些是违规求助? 4716950
关于积分的说明 14964262
捐赠科研通 4786167
什么是DOI,文献DOI怎么找? 2555660
邀请新用户注册赠送积分活动 1516899
关于科研通互助平台的介绍 1477502