亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Urban informal settlements classification via a transformer-based spatial-temporal fusion network using multimodal remote sensing and time-series human activity data

人类住区 计算机科学 传感器融合 人口 图像分辨率 遥感 地理参考 非正式定居点 地理 时间分辨率 数据挖掘 人工智能 人口学 考古 社会学 物理 量子力学 自然地理学 经济增长 经济
作者
Runyu Fan,Jun Li,Weijing Song,Wei Han,Jining Yan,Lizhe Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:111: 102831-102831 被引量:48
标识
DOI:10.1016/j.jag.2022.102831
摘要

Urban informal settlements (UIS) are high-density population areas with low urban infrastructure standards. UIS classification, which automates identifying UIS, is of great significance for various urban computing tasks. Fast and accurate extraction of UIS has the following difficulties. First, from a high-resolution perspective, the buildings in informal settlement areas are low-floor and dense, with complex spatial relationships. Second, informal settlements' remote sensing observation characteristics are highly inconspicuous, caused by the shooting angle and imaging environment. Therefore, it is inadequate to classify UIS using only a single remote sensing image modality. Multimodality data with multiple temporal and spatial characteristics provide a prospective opportunity for the more accurate mapping of UIS. Still, there is a lack of relevant works on UIS classification at present. In this paper, we proposed a hybrid Transformer-based spatio-temporal fusion network, namely, STNet, which integrates a proposed PDNet, ResMixer, and Transformer-based spatio-temporal fusing layer to classify UIS using very-high-resolution (VHR) remote sensing images and time-series Tencent population density (TPD) data. Experiments were conducted in Shenzhen City, confirming the superior performance of the proposed STNet and the fusing of spatio-temporal multimodal remote sensing and time-series TPD data. The proposed STNet reached an overall accuracy (OA) of 88.58% and Kappa of 0.7716, with increases of around 1% to 12% and around 0.03 to 0.25 in OA and Kappa, respectively, compared to other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
1秒前
亠亠完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助30
26秒前
36秒前
小白发布了新的文献求助10
41秒前
54秒前
柚子蟹发布了新的文献求助30
1分钟前
1分钟前
汉堡包应助Eileen采纳,获得10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
柚子蟹完成签到,获得积分10
1分钟前
Eileen完成签到 ,获得积分10
1分钟前
田様应助是多少采纳,获得10
1分钟前
左左曦完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得30
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得70
2分钟前
2分钟前
寒冷的寻菱完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助zhuming采纳,获得10
2分钟前
2分钟前
自信号厂完成签到 ,获得积分10
2分钟前
落叶捎来讯息完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
惠1完成签到,获得积分20
3分钟前
归尘应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
jhx完成签到,获得积分20
4分钟前
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116209
求助须知:如何正确求助?哪些是违规求助? 4322928
关于积分的说明 13469721
捐赠科研通 4155138
什么是DOI,文献DOI怎么找? 2277014
邀请新用户注册赠送积分活动 1278886
关于科研通互助平台的介绍 1216893