Learned Factor Graphs for Inference From Stationary Time Sequences

因子图 推论 计算机科学 人工智能 近似推理 计算 人工神经网络 算法 因子(编程语言) 图形 机器学习 模式识别(心理学) 理论计算机科学 解码方法 程序设计语言
作者
Nir Shlezinger,Nariman Farsad,Yonina C. Eldar,Andrea Goldsmith
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:70: 366-380 被引量:23
标识
DOI:10.1109/tsp.2021.3139506
摘要

The design of methods for inference from time sequences has traditionally relied on statistical models that describe the relation between a latent desired sequence and the observed one. A broad family of model-based algorithms have been derived to carry out inference at controllable complexity using recursive computations over the factor graph representing the underlying distribution. An alternative model-agnostic approach utilizes machine learning (ML) methods. Here we propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences. In the proposed approach, neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence, rather than the complete inference task. By exploiting stationary properties of this distribution, the resulting approach can be applied to sequences of varying temporal duration. Learned factor graphs can be realized using compact neural networks that are trainable using small training sets, or alternatively, be used to improve upon existing deep inference systems. We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data, and can be applied to sequences of different lengths. Our experimental results demonstrate the ability of the proposed learned factor graphs to learn from small training sets to carry out accurate inference for sleep stage detection using the Sleep-EDF dataset, as well as for symbol detection in digital communications with unknown channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助魔幻的泽洋采纳,获得10
1秒前
walden完成签到 ,获得积分10
2秒前
wy.he应助黄浦江采纳,获得10
2秒前
Lan发布了新的文献求助10
4秒前
zx驳回了传奇3应助
4秒前
5秒前
SciGPT应助mkmimii采纳,获得10
5秒前
十六发布了新的文献求助10
5秒前
NYZ发布了新的文献求助10
5秒前
领导范儿应助水星逃逸采纳,获得10
6秒前
三石呦423完成签到,获得积分10
7秒前
8秒前
yyy发布了新的文献求助10
8秒前
发哥关注了科研通微信公众号
8秒前
8秒前
金箍棒完成签到,获得积分10
10秒前
爆米花应助奶油蜜豆卷采纳,获得10
11秒前
11秒前
今后应助瓜兮兮CYY采纳,获得10
11秒前
深情安青应助十六采纳,获得10
12秒前
今后应助z610938841采纳,获得30
13秒前
bulala发布了新的文献求助10
13秒前
潇洒的帽子完成签到,获得积分10
13秒前
CipherSage应助zzz采纳,获得10
13秒前
Lan完成签到,获得积分10
14秒前
易燃物品完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
17秒前
maxyer完成签到,获得积分10
17秒前
further完成签到,获得积分10
17秒前
笑傲江湖完成签到,获得积分10
19秒前
20秒前
满眼星辰发布了新的文献求助10
21秒前
21秒前
21秒前
yyy完成签到,获得积分10
22秒前
内向花卷完成签到,获得积分10
22秒前
朴实涵菡发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403