Dynamical conductance measurement of single molecular junctions with both high-speed and high-precision

电导 信号(编程语言) 电流(流体) 对数 放大器 电压 噪音(视频) 物理 采样(信号处理) 断开连接 偏压 材料科学 光电子学 计算机科学 光学 凝聚态物理 CMOS芯片 探测器 数学分析 图像(数学) 热力学 人工智能 量子力学 程序设计语言 数学
作者
Haiyang Liu,Zhikai Zhao,Xueyan Zhao,Maoning Wang,Tianran Zhao,Xiaopeng Dong
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:12 (7) 被引量:2
标识
DOI:10.1063/5.0095400
摘要

Real-time and rapid monitoring of the electron transport in nanoscale structures is critical for understanding many fundamental phenomena. However, it is not possible to rapidly record the dynamical current that varied across several orders of magnitude by using a typical linear low-noise current-to-voltage converter due to its fixed gain. In addition, it faces a great challenge in carrying out a dynamical small current measurement by using a commercial source-monitor unit device with both high-precision and high-speed because a high-precision measurement normally requests long integration time, while high-speed sampling demands short integration time. To overcome these challenges, we designed a measurement system with an integrated logarithmic amplifier, which can convert the current/conductance signal (varied across eight orders of magnitude) into an output voltage signal (varied within only one order of magnitude). We successfully applied it for the dynamical conductance measurement of single molecular break junctions in which the current rapidly changed from milliampere (mA) to picoampere (pA) within tens of milliseconds under a fixed bias voltage. It is demonstrated that the intrinsic conductance can be determined accurately independent of the applied bias and the real-time dynamical conductance traces can be precisely recorded with a high-speed sampling ratio. This logarithmic amplifier design and home-made measurement system provide a way to realize a fast measurement (30 kHz) for a rapidly varied current (mA–pA), making it suitable for the characterization of single-molecule junctions during the break process, and show potential for a wide application far beyond molecule electronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助long采纳,获得10
刚刚
激动的白梅完成签到,获得积分10
1秒前
2秒前
喜雨的猫完成签到,获得积分20
2秒前
研友_VZG7GZ应助Natsu采纳,获得10
3秒前
3秒前
刘丰铭发布了新的文献求助10
3秒前
豆腐发布了新的文献求助10
4秒前
唐唐发布了新的文献求助10
4秒前
龙邶辰完成签到,获得积分10
5秒前
6秒前
大方博涛完成签到,获得积分10
7秒前
贪玩的溪流完成签到 ,获得积分10
7秒前
wowowowowu完成签到 ,获得积分20
7秒前
光亮邴应助文件撤销了驳回
8秒前
smily完成签到,获得积分10
11秒前
超帅冬云完成签到 ,获得积分10
12秒前
caas6完成签到,获得积分10
13秒前
芹菜完成签到 ,获得积分10
14秒前
bi应助DiaHu采纳,获得50
14秒前
传奇3应助happiness采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
大树完成签到 ,获得积分10
17秒前
17秒前
17秒前
晴天发布了新的文献求助10
18秒前
林正心完成签到,获得积分10
19秒前
打打应助喜雨的猫采纳,获得10
19秒前
interest-li完成签到,获得积分10
20秒前
COSMAO应助萨尔莫斯采纳,获得10
20秒前
21秒前
在学一会完成签到,获得积分10
21秒前
任任任发布了新的文献求助10
22秒前
biofresh发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039