Dynamical conductance measurement of single molecular junctions with both high-speed and high-precision

电导 信号(编程语言) 电流(流体) 对数 放大器 电压 噪音(视频) 物理 采样(信号处理) 断开连接 偏压 材料科学 光电子学 计算机科学 光学 凝聚态物理 CMOS芯片 探测器 数学分析 图像(数学) 热力学 人工智能 量子力学 程序设计语言 数学
作者
Haiyang Liu,Zhikai Zhao,Xueyan Zhao,Maoning Wang,Tianran Zhao,Xiaopeng Dong
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:12 (7) 被引量:2
标识
DOI:10.1063/5.0095400
摘要

Real-time and rapid monitoring of the electron transport in nanoscale structures is critical for understanding many fundamental phenomena. However, it is not possible to rapidly record the dynamical current that varied across several orders of magnitude by using a typical linear low-noise current-to-voltage converter due to its fixed gain. In addition, it faces a great challenge in carrying out a dynamical small current measurement by using a commercial source-monitor unit device with both high-precision and high-speed because a high-precision measurement normally requests long integration time, while high-speed sampling demands short integration time. To overcome these challenges, we designed a measurement system with an integrated logarithmic amplifier, which can convert the current/conductance signal (varied across eight orders of magnitude) into an output voltage signal (varied within only one order of magnitude). We successfully applied it for the dynamical conductance measurement of single molecular break junctions in which the current rapidly changed from milliampere (mA) to picoampere (pA) within tens of milliseconds under a fixed bias voltage. It is demonstrated that the intrinsic conductance can be determined accurately independent of the applied bias and the real-time dynamical conductance traces can be precisely recorded with a high-speed sampling ratio. This logarithmic amplifier design and home-made measurement system provide a way to realize a fast measurement (30 kHz) for a rapidly varied current (mA–pA), making it suitable for the characterization of single-molecule junctions during the break process, and show potential for a wide application far beyond molecule electronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒸馏水完成签到 ,获得积分10
刚刚
ni完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
lc发布了新的文献求助10
1秒前
zhang发布了新的文献求助10
1秒前
1秒前
章婷完成签到,获得积分20
1秒前
可爱的函函应助Anaturez采纳,获得10
2秒前
科研通AI6应助kk采纳,获得10
2秒前
3秒前
3秒前
NexusExplorer应助zzs采纳,获得50
4秒前
5秒前
liyi发布了新的文献求助10
5秒前
5秒前
江南客发布了新的文献求助10
5秒前
John完成签到,获得积分10
6秒前
7秒前
zihaolee完成签到,获得积分10
7秒前
深情安青应助kakaa采纳,获得10
7秒前
7秒前
gefan发布了新的文献求助10
8秒前
科研通AI6应助周明明采纳,获得10
8秒前
9秒前
饱满豌豆完成签到 ,获得积分20
9秒前
sensen发布了新的文献求助10
11秒前
李博士发布了新的文献求助10
11秒前
其7完成签到,获得积分10
12秒前
文俊伟发布了新的文献求助10
12秒前
淡淡的碧蓉完成签到,获得积分10
13秒前
失眠的霸完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
ding应助青葱之松采纳,获得10
17秒前
英姑应助Genius采纳,获得10
18秒前
庾傀斗发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776576
关于积分的说明 15045518
捐赠科研通 4807664
什么是DOI,文献DOI怎么找? 2571012
邀请新用户注册赠送积分活动 1527703
关于科研通互助平台的介绍 1486609